<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
From the question;
1 x 10^5 people can fill 1 stadium
We are given, 1 x 10^18 atoms of iron
We are required to determine the number of stadiums that 1 x 10^18 atoms of iron would occupy.
We are going to assume that a stadium would occupy a number of atoms equivalent to the number of people.
Therefore;
One stadium = 1 x 10^5 atoms
Then, to find the number of stadiums that will be occupied by 1 x 10^18 atoms;
No. of stadiums = Total number of atoms ÷ Atoms in a single stadium
= 1 x 10^18 atoms ÷ 1 x 10^5 atoms
= 1 x 10^13 stadiums
Therefore, 1 x 10^18 atoms of iron would occupy 1 x 10^13 stadiums
Answer:
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
Explanation:
Iron can be formed in two steps.
Step 1: 2 C(s) + O₂(g) → 2 CO(g)
Step 2: Fe₂O₃(s) + 3 CO(g) → 2 Fe(s) + 3 CO₂(g)
In order to get the net chemical equation, we will multiply the first step by 3, the second step by 2, and then add them.
6 C(s) + 3 O₂(g) → 6 CO(g)
+
2 Fe₂O₃(s) + 6 CO(g) → 4 Fe(s) + 6 CO₂(g)
--------------------------------------------------------------------------------------------------
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) + 6 CO(g) → 6 CO(g) + 4 Fe(s) + 6 CO₂(g)
6 C(s) + 3 O₂(g) + 2 Fe₂O₃(s) → 4 Fe(s) + 6 CO₂(g)
It breaks into calcium oxide and carbon di oxide.
Sulfuric acid is considered as a Bronsted acid because it is a proton donor. When in solution, the molecules of the compound dissociates into ions, the hydrogen ion and the the sulfate ion. It donates the hydrogen ion so it is an acid, a bronsted acid.