Answer:
a) 84.034°C
b) 92.56°C
c) ≈ 88 watts
Explanation:
Thickness of aluminum alloy fin = 12 mm
width = 10 mm
length = 50 mm
Ambient air temperature = 22°C
Temperature of aluminum alloy is maintained at 120°C
<u>a) Determine temperature at end of fin</u>
m = √ hp/Ka
= √( 140*2 ) / ( 12 * 10^-3 * 55 )
= √ 280 / 0.66 = 20.60
Attached below is the remaining answers
Answer:
Suction and exhaust processes do not affect the performance of Otto cycle.
Explanation:
Step1
Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.
Step2
Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.
Step3
The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:
Process 0-1 is suction process and process 1-0 is exhaust process.
Your allowed to switch lanes as long as the road is clear and you use signals.
Explanation:
Outer di ameter
Given loading on the cylinder
Helix an gle of the weld form
(i) Normal stress on the plane at angle
is
(ii) Shear stress along an angle of
is

Answer:
#include <stdio.h>
typedef struct InventoryTag_struct {
int itemID;
int quantityRemaining;
} InventoryTag;
int main(void) {
InventoryTag redSweater;
redSweater.itemID = 314;
redSweater.quantityRemaining = 500;
/* Your solution goes here */
printf("Inventory ID: %d, Qty: %d\n",redSweater.itemID,redSweater.quantityRemaining);
getchar();
return 0;
}
Explanation: