1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
2 years ago
8

You should use the pass technique a fire extinguisher

Engineering
1 answer:
PilotLPTM [1.2K]2 years ago
8 0

Answer:

Yes

Explanation:

You might be interested in
A fatigue test was conducted in which the mean stress was 90 MPa (13050 psi), and the stress amplitude was 190 MPa (27560 psi).
Gwar [14]

Answer:

a) 280MPa

b) -100MPa

c) -0.35

d) 380 MPa

Explanation:

GIVEN DATA:

mean stress \sigma_m = 90MPa

stress amplitude \sigma_a = 190MPa

a) \sigma_m =\frac{\sigma_max+\sigma_min}{2}

    90 =\frac{\sigma_{max}+\sigma_{min}}{2} --------------1

\sigma_a =\frac{\sigma_{max}-\sigma_{min}}{2}

   190 = \frac{\sigma_{max}-\sigma_{min}}{2} -----------2

solving 1 and 2 equation we get

\sigma_{max} = 280MPa

b) \sigma_{min} = - 100MPa

c)

stress ratio=\frac{\sigma_{min}}{\sigma_{max}}

=\frac{-100}{280} = -0.35

d)magnitude of stress range

                      =(\sigma_{max} -\sigma_{min})

                       = 280 -(-100) = 380 MPa

3 0
3 years ago
30 points and brainiest if correct please help A, B, C, D
tatuchka [14]

Answer:

B. to lock the tape into place

Explanation:

the button on the front of the housing locks the tape into place when pressed, preventing the tape from being pulled out further it retracting

4 0
2 years ago
. Two rods, with masses MA and MB having a coefficient of restitution, e, move
GarryVolchara [31]

Answer:

a) V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}

b) U_A = 3.66 m/s

V_B = 4.32 m/s

c) Impulse = 0 kg m/s²

d) percent decrease in kinetic energy = 47.85%

Explanation:

Let U_A be the initial velocity of rod A

Let U_B be the initial velocity of rod B

Let V_A be the final velocity of rod A

Let V_B be the final velocity of rod B

Using the principle of conservation of momentum:

M_AU_A + M_BU_B = M_AV_A + M_BV_B............(1)

Coefficient of restitution, e = \frac{V_B - V_A}{U_A - U_B}

V_A = V_B - e(U_A - U_B)........................(2)

Substitute equation (2) into equation (1)

M_AU_A + M_BU_B = M_A(V_B - e(U_A - U_B)) + M_BV_B..............(3)

Solving for V_B in equation (3) above:

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}....................(4)

From equation (2):

V_B = V_A + e(U_A -U_B)......(5)

Substitute equation (5) into (1)

M_AU_A + M_BU_B = M_AV_A + M_B(V_A + e(U_A -U_B))..........(6)

Solving for V_A in equation (6) above:

V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}.........(7)

b)

M_A = 2 kg\\M_B = 1 kg\\U_B = -3 m/s( negative x-axis)\\e = 0.65\\U_A = ?

Rod A is said to be at rest after the impact, V_A = 0 m/s

Substitute these parameters into equation (7)

0 = \frac{(2 - 0.65*1)U_A - (1*3)(1+0.65)}{2+1}\\U_A = 3.66 m/s

To calculate the final velocity, V_B, substitute the given parameters into (4):

V_B = \frac{(2*3.66)(1+0.65) - (1 - (0.65*2))*3}{2+1}\\V_B = 4.32 m/s

c) Impulse, I = M_AV_A + M_BV_B - (M_AU_A + M_BU_B)

I = (2*0) + (1*4.32) - ((2*3.66) + (1*-3))

I = 0 kg m/s^2

d) %\triangle KE = \frac{(0.5 M_A V_A^2 + 0.5 M_B V_B^2) - ( 0.5 M_A U_A^2 + 0.5 M_B U_B^2)}{0.5 M_A U_A^2 + 0.5 M_B U_B^2} * 100\%

%\triangle KE = \frac{((0.5*2*0) + (0.5 *1*4.32^2)) - ( (0.5 *2*3.66^2) + 0.5*1*(-3)^2))}{ (0.5 *2*3.66^2) + 0.5*1*(-3)^2)} * 100\%

% \triangle KE = -47.85 \%

7 0
3 years ago
Does a general repair <br> manual have the answers to all repairs?
uranmaximum [27]

Explanation:

yes it has the answers to all repairs

4 0
3 years ago
Compute the first four central moments for the following data:
alina1380 [7]

Answer:

Compute the first four central moments for the following data:

i xi

1 45

2 22

3 53

4 84Explanation:

7 0
2 years ago
Other questions:
  • Write SQL queries to answer the following questions: What are the names of the course(s) that student Altvater took during the s
    13·1 answer
  • A discrete MOSFET common-source amplifier has RG = 2 MΩ, gm = 5 mA/V, ro = 100 kΩ, RD = 20kΩ, Cgs = 3pF, and Cgd = 0.5pF. The am
    15·1 answer
  • In the combination of resistors above, consider the 1.50 µΩ and 0.75 µΩ. How can you classify the connection between these two r
    6·1 answer
  • If you touch a downed power line, covered or bare, what's the likely outcome?
    8·2 answers
  • Harmony in music is characterized by _____.
    14·2 answers
  • In using the drag coefficient care needs to be taken to use the correct area when determining the drag force. What is a typical
    7·1 answer
  • What is stress corrosion cracking?
    9·1 answer
  • potential difference is the work done in moving a unit positive charge from one point to another in an electric field. State Tru
    12·1 answer
  • If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
    10·1 answer
  • The build up of electrons will cause electrical called ?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!