<u>Answer:</u>
<u>For A:</u> The equation is 
<u>For B:</u> The equation is 
<u>For C:</u> The equation is 
<u>Explanation:</u>
Alpha decay process is the process in which nucleus of an atom disintegrates into two particles. The first one which is the alpha particle consists of two protons and two neutrons. This is also known as helium nucleus. The second particle is the daughter nuclei which is the original nucleus minus the alpha particle released.

Beta decay process is defined as the process the neutrons get converted into an electron and a proton. The released electron is known as the beta particle. In this process, the atomic number of the daughter nuclei gets increased by a factor of 1 but the mass number remains the same.

<u>For A:</u> Uranium-238 emits an alpha particle
The nuclear equation for this process follows:

<u>For B:</u> Plutonium-239 emits an alpha particle
The nuclear equation for this process follows:

<u>For C:</u> Thorium-239 emits a beta particle
The nuclear equation for this process follows:

Answer:
See explanation and image attached
Explanation:
Fischer esterification is a type of reaction used to convert carboxylic acids to ester in the presence of excess alcohol and a strong acid which acts as a catalyst. Another final product formed in the reaction is water.
The mechanism for the fischer esterification of Benzoic acid and C H 3 O H in the presence of HCl as the catalyst is shown in the image attached to this answer.
The final products of the reaction are methyl benzoate, water and H^+ as shown in the image attached.
Answer:
the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene
Explanation:
The λmax is the wavelength of maximum absorption. We could use it to calculate the HOMO-LUMO energy difference as follows:
For ethylene
E= hc/λ= 6.63×10^-34×3×10^8/170×10^-9= 1.17×10^-18J
For cis,trans−1,3−cyclooctadiene
E= hc/λ=6.63×10^-34×3×10^8/230×10^-9=8.6×10^-19J
Therefore, the HOMO-LUMO energy difference in ethylene is greater than that of cis,trans−1,3−cyclooctadiene