Answer: I've solved the above questions and attached pictures too which show the working for better understanding of the questions.
hope that helps...
<span>Kinetic
energy is the energy that is possessed by an object that is moving. It is
calculated by one-half the product of the mass and the square of the velocity
of the object. We need to determine the velocity of the cart that is moving.
</span>
First, we use Newton's Second Law of motion;
<span>Force = ma
200 = 55a
a = 3.64 m/s^2
Then, from the kinematic equation we calculate the velocity;
v^2 = v0^2 + 2ax
where v is the final velocity, v0 is the initial veocity (zero since it initially start at zero), a is the acceleration ( 3.64 m/s^2) and x is the distance traveled.
v^2 = 0^2 + 2 (3.64) (10)
v^2 = 72.73 m^2 / s^2
v = 8.53 m / s
KE = mv^2 / 2
KE = 1/2 (55) (8.53^2)
KE= 2000 J</span>
Answer:
The energy goes from <u>the ground state</u> to <u>the excited states</u> above it.
<span>There is no special name for that. Physics is usually just concerned with "forces", and doesn't specify whether the force pushes or pulls. If you want to be more specific, you can just call it a "pulling force".
I hoped this was satisfying!:)</span>
A book falls off of a \displaystyle 2.2m high table. If the book weighs \displaystyle 0.75kg, what will its final velocity be right before it hits the ground?