Answer:
Depending on the
value of
, the cell potential would be:
, using data from this particular question; or- approximately
, using data from the CRC handbooks.
Explanation:
In this galvanic cell, the following two reactions are going on:
- The conversion between
and
ions,
, and - The conversion between
and
ions,
.
Note that the standard reduction potential of
ions to
is higher than that of
ions to
. Alternatively, consider the fact that in the metal activity series, copper is more reactive than silver. Either way, the reaction is this cell will be spontaneous (and will generate a positive EMF) only if
ions are reduced while
is oxidized.
Therefore:
- The reduction reaction at the cathode will be:
. The standard cell potential of this reaction (according to this question) is
. According to the 2012 CRC handbook, that value will be approximately
.
- The oxidation at the anode will be:
. According to this question, this reaction in the opposite direction (
) has an electrode potential of
. When that reaction is inverted, the electrode potential will also be inverted. Therefore,
.
The cell potential is the sum of the electrode potentials at the cathode and at the anode:
.
Using data from the 1985 and 2012 CRC Handbook:
.
Is what? It depends on what your talking about.
The temp is 0.002448 of the equation
At diverging plate boundaries, earthquakes occurs as the plates pull away from each other. Volcanoes form between the plates, as magma rises upward from the underlying mantle. Second, two plates may come together, at a converging plate boundary. Two situations are possible at converging plate boundaries.
I think it’s to long to fit in a period??