Complete question is;
A force stretches a wire by 0.60 mm. A second wire of the same material has the same cross section and twice the length.
a) How far will it be stretched by the same force?
b) A third wire of the same material has the same length and twice the diameter as the first. How far will it be stretched by the same force?
Answer:
0.15 mm
Explanation:
According to Hooke's Law,
E = Stress(σ)/Strain(ε)
Where E is youngs modulus
Formula for stress is;
Stress(σ) = Force(F)/Area(A)
Formula for strain is;
Strain(ε) = Change in length/original length = (Lf - Li)/Li
We are also told that a second wire of the same material has the same cross section and twice the length.
Thus;
Rearranging Hooke's Law to get the constants on one side, we have;
F/(AE) = ε
Thus from the conditions given;
ε1 = 0.6/Li
ε2 = (Change in length)/(2*Li)
And ε1 = ε2
Thus;
0.6/Li = Change in length/(2*Li)
Li will cancel out and we now have;
Change in length = 2 × 0.6 = 1.2 mm
Finally, we are told A third wire of the same material has the same length and twice the diameter as the first.
Area of a circle;A1 = πd²/4
Now, we are told d is doubled.
Thus, new area of the new circle is;
A2 = π(2d)²/4 = πd²
Rearranging Hooke's Law,we have;
F/A = εE
Since F and E are now constants, we have;
F/E = constant = Aε
Thus;
A1(ε1) = A2(ε2)
A1 = πd²/4
e1 = 0.60/Li
A2 = πd²
e2 = Change in length/Li
Thus;
((πd²/4) × 0.6)/Li = (πd² × Change in length)/ Li
Rearranging, Li and πd² will cancel out to give;
0.6/4 = Change in length
Change in length = 0.15 mm