To solve this problem we will apply the concepts related to the wavelength of its third harmonic.
It describes that the wavelength is equivalent to

Here,

The wavelength is in turn described as a function that depends on the change of the speed as a function of the frequency, that is to say

In this case the speed is equivalent to the speed of sound and the frequency was previously given, therefore


Finally the length of the pipe would be


Answer: i guess d is the correct answer
initial velocity of the car given as

final velocity is given as

as we know that

now we can convert final speed into m/s

now acceleration is rate of change in velocity



so the acceleration of the car is 3 m/s^2
The image is always virtual and erect. The image is highly diminished or point sized. It is always formed between F and P.
<h2>
Hello!</h2>
The answer is:
The buoyant force is equal to 49N.
<h2>
Why?</h2>
The buoyant force is the force that pushes upwards and object when it's submerged in water, this force is always trying to move the object to the surface of the liquid or water. We must consider that the volume of water or liquid displaced is equal to the volume of the submerged object.
We can calculate the buoyant force using the following formula:

Where,
Density is the density of the water or liquid.
Volume displaced is equal to the volume of the submerged object.
Gravity acceleration is the acceleration due to gravity.
So, from the statement we know that:

Now, substituting and calculating we have:




Hence, we have that the correct answer is:
The buoyant force is equal to 49N.
Have a nice day!