The First 2 statements stated above were false whereas the third one is a true statement.
Explanation:
- The viscosity of bitumen is about 100 times greater than the viscosity of water - False
Reason - The viscosity of bitumen is about not 100 times greater than the viscosity of water, it is actually 100, 000 times greater.
- Oil from oil sand deposits is only obtained by first heating the sands at high temperatures is False.
Reason- Oil from oil sand deposits is not obtained by first heating the sands at high temperatures but by using steams
- Oil sands contain sand, water, and light crude oil is true.
Answer:
19.91 J/K
Explanation:
The entropy is a measure of the randomness of the system, and it intends to increase in nature, thus for a spontaneous reaction ΔS > 0.
The entropy variation can be found by:
ΔS = ∑n*S° products - ∑n*S° reactants
Where n is the coefficient of the substance. The value of S° (standard molar entropy) can be found at a thermodynamic table.
S°, Cl(g) = 165.20 J/mol.K
S°, O3(g) = 238.93 J/mol.K
S°, O2(g) = 205.138 J/mol.K
So:
ΔS = (1*205.138 + 1*218.9) - (1*165.20 + 1*238.93)
ΔS = 19.91 J/K
The answer should be <span>C. nuclear reaction.</span>
Use the van der Waals equation and the ideal gas equation to calculate the volume of 1.000 mol of neon at a pressure of 500.0 atm and a temperature of 355.0 K.
The Van der Waals equation, also known as the Van der Waals equation of state, is an equation of state used in chemistry and thermodynamics that extends the ideal gas law to take into account the effects of molecular interaction as well as the finite size of the molecules in a gas.
We may build a new equation that better reflects real gas behavior by modifying the ideal gas law to include corrections for interparticle attractions and particle volumes. The van der Waals equation can be used to determine a gas's properties under less-than-ideal circumstances.
To learn more about the van der Waals equation please visit
brainly.com/question/13201335
#SPJ4
The skateboard's acceleration would decrease.
The larger the mass of an object, the more force is required to move it.