Answer:
we can do it again and again and again and again and again and again
Inclined planes reduce the amount of effort needed to move an object, but increases the length of the ramp.
<u>Explanation:</u>
Mechanical advantage is the measure of amount of effort needed to move an object. The mechanical advantage can be calculated as the ratio of length of ramp to the height of ramp for an inclined plane.
As it is known that an object can be easily moved on an inclined plane than on a vertical plane, this is because, the inclined plane provides greater output force. But in that case, the effort required will be reduced with the cost of increasing the distance of the movement of object.
In other terms , the ramp's length of inclined planes has to get increased in order to reduce the amount of effort needed to move an object. This is because as the mechanical advantage has length of the ramp in the numerator, with the increase in numerator value or length value the mechanical advantage will also increase.
Answer:
Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, in general, are not reversible except by further chemical reactions.
Explanation:
There is a specific formula to use for these type of problems.
ln (P2/ P1)= Δvap/ R x (1/T1 - 1/T2)
R= 8.314
P1= 92.0 torr
T1= 23 C + 273= 296 K
P2= 351.0 torr
T2= 45.0 C + 273= 318 K
plug the values and solve for the unknown
ln( 351.0/ 92.0)= Δvap/ 8.314 x (1/296 - 1/318)
Δvap= 47630.6 joules