There are many ways to test and identify metal. The easiest way is observing its color. Also how reflective it is. Other ways would be boiling point, melting point, density, or conductivity of the metal.
Hope This Helps and God Bless!
Explanation:
<em>Hi</em><em> </em><em>there</em><em>!</em><em>!</em>
<em>you</em><em> </em><em>asked</em><em> </em><em>to</em><em> </em><em>multiply</em><em> </em><em>these</em><em> </em><em>all</em><em> </em><em>right</em><em>,</em>
<em>you</em><em> </em><em>can</em><em> </em><em>simply</em><em> </em><em>multiply</em><em> </em><em>it</em><em> </em><em>,</em>
<em>=</em><em>3</em><em>cm</em><em> </em><em>×</em><em> </em><em>4</em><em> </em><em>cm</em><em> </em><em>×</em><em> </em><em>1</em><em>cm</em>
<em>=</em><em> </em><em>1</em><em>2</em><em>cm</em><em>^</em><em>2</em><em>×</em><em>1</em><em>cm</em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>4</em><em>×</em><em>3</em><em>=</em><em>1</em><em>2</em><em>)</em>
<em>=</em><em> </em><em>1</em><em>2</em><em>cm</em><em>^</em><em>3</em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>1</em><em>2</em><em>×</em><em>1</em><em>=</em><em>1</em><em>2</em><em>)</em>
<em>Therefore</em><em>, </em><em> </em><em>the</em><em>answer is</em><em> </em><em>1</em><em>2</em><em> </em><em>cm</em><em>^</em><em>3</em><em>.</em>
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
1. V₁ = 2.0 mL
2. V₁ = 2.5 mL
Explanation:
<em>You are provided with a stock solution with a concentration of 1.0 × 10⁻⁵ M. You will be using this to make two standard solutions via serial dilution.</em>
To calculate the volume required (V₁) in each dilution we will use the dilution rule.
C₁ . V₁ = C₂ . V₂
where,
C are the concentrations
V are the volumes
1 refers to the initial state
2 refers to the final state
<em>1. Perform calculations to determine the volume of the 1.0 × 10⁻⁵ M stock solution needed to prepare 10.0 mL of a 2.0 × 10⁻⁶ M solution.</em>
C₁ . V₁ = C₂ . V₂
(1.0 × 10⁻⁵ M) . V₁ = (2.0 × 10⁻⁶ M) . 10.0 mL
V₁ = 2.0 mL
<em>2. Perform calculations to determine the volume of the 2.0 × 10⁻⁶ M solution needed to prepare 10.0 mL of a 5.0 × 10⁻⁷ M solution.</em>
C₁ . V₁ = C₂ . V₂
(2.0 × 10⁻⁶ M) . V₁ = (5.0 × 10⁻⁷ M) . 10.0 mL
V₁ = 2.5 mL
The question is incomplete. The complete question is :
A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)
Solutions :
If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.
Let's take :
The rate constant = respectively.
The activation energy and the Arhenius factor is same.
So by the arhenius equation,
and
Given, J/mol
R = 8.314 J/mol/K
∴
So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.
With the info given i would have to say their is no kinetic energy, it's all potential energy.