The molar mass of this gas is 92.3 g/mol
Calculation
By use ideal gas equation PV =nRT where
n=mole p=pressure V= volume R = gas constant T= temperature
n = mass /molar mass(MM)
substitute in the equation
PV =(mass/MM)RT
mass = density x volume(V)
Therefore PV =(density xV/ MM) xRT
divide both side by by V
P= (density/Mm) xRT
making MM the subject of the formula
MM = densityPRT
At STP = P= 1 atm, R= 0.0821 L.atm/Mol.k T = 273 K
MM is therefore = 4.12 g/l x 1 atm x 0.081 L.atm/mol.k x 273 K = 92.3 g/mol
<span>4.9 L would be the answer to this question :)</span>
The final temperature of the mixture : 21.1° C
<h3>Further explanation </h3>
The law of conservation of energy can be applied to heat changes, i.e. the heat received / absorbed is the same as the heat released
Q in(gained) = Q out(lost)
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Q ethanol=Q water
mass ethanol=

mass water =

then the heat transfer :

Answer:
Carbon dioxide reacts with calcium hydroxide solution to produce a white precipitate of calcium carbonate
Explanation:
. Limewater is a solution of calcium hydroxide. If carbon dioxide is bubbled through limewater, the limewater turns milky or cloudy white
Answer:
Explanation:
Common Examples of the Law of Definite Proportions
Water, written as the chemical compound H20, is made up of atoms of hydrogen and oxygen. If one oxygen atom is combined with two hydrogen atoms, water is created.