Answer:
Work done is 12.3 J
Explanation:
We have,
Mass of puck, m = 0.35 kg
Force of friction acting on the puck when it slides is 0.15 N
Distance travelled by the puck is 82 m.
It is required to find the work done on the puck. Finally the puck comes to rest and the force of friction is acting on it. It means the applied force is 0.15 N. Work done is given by

The work done on the puck is 12.3 J.
V = volts
<span>I = amps </span>
<span>P = rate or energy transfer (power) </span>
<span>and </span>
<span>P = V * I</span>
A student uses a meter to measure 120 coulombs flowing through a circuit in 60 seconds. The electric current in this circuit will be 2 A
Current is a flow of electrical charge carriers, usually electrons or electron-deficient atoms. The common symbol for current is the uppercase letter I. The standard unit is the ampere, symbolized by A.
current = charge / time
given
time = 60 seconds
charge = 120 Coulombs
current = Q / T = 120 / 60 = 2 A
To learn more about electric current here
brainly.com/question/12791045
#SPJ4
Both the man and the woman will be experiencing the same impulse, due to Newton's third law of motion.
Explanation:
This problem considers law of conservation of momentum as well as Newton's third law of motion. As per the third law of motion, every action has an equal and opposite reaction. And the law of conservation of momentum states that the momentum is conserved after collision.
Since, here the woman is kneeling on the man, it is similar to inelastic collision where the man and woman are moving with same velocity. And as the man accelerates the woman, the woman will exhibit a forward force. While at the same time, the man will be experiencing a backward force of same magnitude as of the woman. This is in consistence with the third law of motion.
So both the man and woman will experience force of same magnitude but opposite in direction. As impulse is directly proportional to the force acting on any object in a given duration, so both the man and the woman will be experiencing the same impulse.