Answer:
The crate was being lifted by a height of 1.48 meters.
Explanation:
In an attempt o move a crate;
Force applied = 2470 N
Work done by the force = 3650 J
We know that the work done is defined as the force used to move an object to a distance.
Given the Force used and the work done by that Force, we need to find out the distance the crate was lifted to.
Work done is defined as:
Work = Force*distance covered in the direction of the force
3650 = 2470*distance
distance = 3650/2470
distance = 1.48 meters
Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
Answer:
505929 AU
Explanation:
As you may know, one light-year is equivalent to approximately 63241.1 Astronomical Units. To get your answer, simply multiply 63241.1 * 8 to get ≈505929 AU
Kinetic energy is the energy possessed by a body while in motion. It is calculated by 1/2mv², where m is the mass of the body and v is the velocity.
Therefore, kinetic energy is dependent on both mass of the body and the velocity. An increase in mass increases the kinetic energy, an increase in velocity also increases kinetic energy of the body. Thus, doubling the mass and doubling the velocity will both increase the kinetic energy of the body.
Answer:
a) 0.0007326
b) 0.03223
c) 0.2418
d) 0.2418
Explanation:
To find different probabilities for the selection of components among eleven good and four defective components, we will use the Combination.
a)
b)
c)
d)