Answer:
Following are the solution to this question:
Explanation:
Law:




Answer: d) the presence of solidified lava flows on the Moon
Explanation:
A geological activity means an occurrence of event such as volcanic eruption, earthquake, sedimentation, erosion etc. The revolution of the Moon around the Earth
, the axial tilt of the Moon or the phases of the Moon are not surface features. hence, these events cannot provide the evidence of geological activity in the past of Moon.
The surface features of moon such as Mares, Craters, mountains, Rays and rills are the proof of some geological activity on the Moon. Mares are the dark patches on the moon's surface formed of solidified lava. Due to negligible atmosphere on the moon, the meteors strike its surface and cause craters to form. Thus, the correct answer is d.
Answer:
True
Explanation:
In an alternating current, voltage levels can be easily increased or decreased as per the requirements of the energy distribution in practical world.
Hence, the given statement is true
Answer:
The quantity of electrons that flows past a given point is 3.0 C.
Explanation:
An electric current (I) is the ratio of the quantity of charges (Q) that flows through a point to the time taken (t).
i.e I = 
It is measured in Ampere's by the use of an ammeter in the laboratory. The quantity of charge that flow through a given point is measured in Coulombs, while time is measured in seconds.
Given that; I = 1.5A and t = 2s, find Q.
Q = It
= 1.5 × 2
= 3.0 C
The quantity of electrons that flows past a given point is 3.0 C.
Answer:
<em>The rubber band will be stretched 0.02 m.</em>
<em>The work done in stretching is 0.11 J.</em>
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = <em>0.02 m</em>
<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.
potential energy stored = 
==>
= <em>0.11 J</em>