Answer:
2.26 s
Explanation:
Let's take down to be positive.
Given (in the y direction):
Δy = 25 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
25 m = (0 m/s) t + ½ (9.8 m/s²) t²
25 = 4.9t²
t = 2.26 s
If the ball instead had an initial horizontal velocity of 5 m/s, its initial vertical velocity is still 0 m/s. So the time to fall is still 2.26 s.
(a) The ball's height <em>y</em> at time <em>t</em> is given by
<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :
0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )
<em>t</em> = 0 or (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 <em>g t</em>
<em>t</em> = (40 m/s) sin(40º) / <em>g</em>
<em>t</em> ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So
0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>
where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :
<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)
<em>y</em> ≈ 8.4 m
Answer:
I think A
Explanation:
because it dosn't have enough tools
Answer:
Separation of the Earth into layers (crust, mantle, inner core, and outer core) was largely caused by gravitational differentiation (separating different constituents at temperature where materials are liquid or plastic, owing to differences in density) early in Earth's history.
Explanation:
hoped it helped!!