Explanation:
As the given spheres are connected by a thin wire so, the potential on the spheres are the same.
......... (1)
Hence, total charge will be as follows.
= Q = -95.5 nC .......... (2)
Using the above two equations, the final equation will be as follows.

and, 
Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

= 
= 82.714 nC
Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.
Answer: now take this with a grain of salt because I'm in middle school but I think that the more massive object has more potential energy.
Explanation:
Answer:
0.36 kg-m/s
Explanation:
Given that,
Mass of a ball, m = 0.06 kg
Initial velocity of the ball, u = 20 m/s
Final velocity of the ball, v = 26 m/s
We need to find the change in momentum of the tennis ball. It is equal to the final momentum minus initial momentum

So, the change in momentum of the ball is 0.36 kg-m/s.
Answer:
Use a faster than normal approach and landing speed.
Explanation
For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.
One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.
Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.
Answer:
v = -14 m/s
Explanation:
Given that,
Initial location of the ball, X₁ = 10 m
Final position of the ball, X₂ = -25 m
Time taken to travel is, t = 2.5 s
The average velocity of the ball is given by the formula,
V = X₂ - X₁ / t m/s
Substituting the values in the above equation,
V = -25 - 10 / 2.5
= -14 m/s
The negative sign in the velocity indicates that ball rolls in the opposite direction.
Hence, the average velocity of the ball is v = -14 m/s