Answer:
a)3.86 ×10³m/s
b)4.83× 10⁷ s
Explanation:
a)
The speed that a satellite at a given radius must travel so as to orbit in the presence of gravity is given by;
![v=\sqrt{\frac{Gm_2}{r} }](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7BGm_2%7D%7Br%7D%20%7D)
where;
G is the universal gravitational constant given as 6.67 × 10⁻¹¹ N.m²/kg²
m is mass of Earth given as 5.972×10²⁴kg
r is the radius at which the satellites orbit
v is the speed of satellite
r is obtained by the sum of distance from center of Earth and height of satellite from earth
Height of satellite from earth= 11000 nautical miles
1 nautical mile=1.852 km
11000 nautical miles =?
11000*1.852 = 20372 km
1 km = 1000 m
20372 km=?
=20372000m
=2.04×10⁷ m
r= 6.38×10⁶ m +2.04×10⁷ m
r=2.68×10⁷ m
Substitute values in equation;
![v^2=\frac{(6.67*10^{-11})*(5.972*10^{24}) }{2.68*10^{7} } \\\\\\v^2=1.49*10^{7}\\\\\\v=\sqrt{1.49*10^7} \\\\\\v=3.86*10^3 m/s](https://tex.z-dn.net/?f=v%5E2%3D%5Cfrac%7B%286.67%2A10%5E%7B-11%7D%29%2A%285.972%2A10%5E%7B24%7D%29%20%20%7D%7B2.68%2A10%5E%7B7%7D%20%7D%20%5C%5C%5C%5C%5C%5Cv%5E2%3D1.49%2A10%5E%7B7%7D%5C%5C%5C%5C%5C%5Cv%3D%5Csqrt%7B1.49%2A10%5E7%7D%20%5C%5C%5C%5C%5C%5Cv%3D3.86%2A10%5E3%20m%2Fs)
b)The formula for period is
![T=2\pi *\sqrt{\frac{r^3}{Gm} }](https://tex.z-dn.net/?f=T%3D2%5Cpi%20%2A%5Csqrt%7B%5Cfrac%7Br%5E3%7D%7BGm%7D%20%7D)
where T is the period of the satellite
Substituting values
![T=2*3.14*\sqrt{\frac{(2.68*10^7)^3}{(6.67*10^-11)*(5.972*10^24)} } \\\\\\T=4.83*10^7 s](https://tex.z-dn.net/?f=T%3D2%2A3.14%2A%5Csqrt%7B%5Cfrac%7B%282.68%2A10%5E7%29%5E3%7D%7B%286.67%2A10%5E-11%29%2A%285.972%2A10%5E24%29%7D%20%7D%20%5C%5C%5C%5C%5C%5CT%3D4.83%2A10%5E7%20s)