Answer: x ≈ 36.3 cm
Explanation:
Conservation of momentum during the collision
0.0340(120) + 1.24(0) = (0.0340 + 1.24) v
v = 3.2025 m/s
The kinetic energy of the block/bullet mass will convert to spring potential
½kx² = ½mv²
x = √(mv²/k)
x = √(1.274(3.2025²) / 99.0)
x = 0.363293... ≈ 36.3 cm
Answer:
Relative to the ground, the velocity of the aircraft is 240 km/hr
Explanation:
Relative velocity is different from normal velocity;
When 2 objects are moving in opposite directions towards each other, they will appear to be faster than they actually are;
This is known as the relative velocity;
The information tells us we have the aircraft moving 320 km/hr northwards relative to the wind;
The wind is in the opposite direction at 80 km/hr;
R = relative velocity of the aircraft
v = actual velocity of the aircraft
w = velocity of the wind
R = v + w
Note: if the wind was moving in the same direction, the formula would be R = v - w
320 = v + 80
v = 320 - 80
v = 240
The velocity relative to the ground is simply the actual velocity as the ground doesn't move;
So, relative to the ground, the velocity of the aircraft is simply 240 km/hr
Answer:
E=12.2V/m
Explanation:
To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
The equation is given by,

Where,
V= Drift Velocity
I= Flow of current
n= number of electrons
q = charge of electron
A = cross-section area.
For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is



Mobility
We can find the drift velocity replacing,


The electric field is given by,


