Answer:
I. Speed = 20m/s
II. Velocity = 20m/s due North.
Explanation:
<u>Given the following data;</u>
Distance = 40m
Time = 2secs
To find the speed;
Mathematically, speed is given by the formula;

Substituting into the equation, we have;

<em>Speed = 20m/s.</em>
In physics, we use the same formula for calculating speed and velocity. The only difference is that speed is a scalar quantity and as such has magnitude but no direction while velocity is a vector quantity and as such it has both magnitude and direction.

<em>Therefore, the velocity is 20m/s due North</em>.
Energy from the gravitational potential store in converted to kinetic energy. Air friction acts against the object, dissipating some energy as heat or sound. The object will continuously accelerate until the acceleration is equal to the air friction acting against it. This is when it reaches terminal velocity
Given the value of the mass of each boxes, the work done in lifting the boxes to the given height is 1.6 × 10⁵J.
<h3>
Work done</h3>
Work done is simply defined as the energy transfer that takes place when an object is either pushed or pulled over a certain distance by an external force. It is expressed as;
W = F × d
Where F is force applied or Weight and d is distance
Also Force = Weight = mass × acceleration due to gravity.
Since gravity is acting on the boxes as it been lift
W = Weight × height from ground level
W = mg × d
Where m is mass of the boxes, g is accelration due to gravity( g = 9.8m/s² ) and d is distance from ground level.
Given the data in the question;
- Since each box has a mass of 7.89 kg
- Mass of the 345 boxes = 345 × 7.89 kg = 2722.05kg
- Distance or height d = 6.0m
To determine the work done, we substitute our values into the expression above.
W = mg × d
W = 2722.05kg × 9.8m/s² × 6.0m
W = 160056.5kgm²/s²
W = 160056.5J
W = 1.6 × 10⁵J
Therefore, Given the value of the mass of each boxes, the work done in lifting the boxes to the given height is 1.6 × 10⁵J.
Learn more about work done here: brainly.com/question/26115962
Answer:
D. Metallic atoms have valence shells that are mostly empty, which
means these atoms are more likely to give up electrons and allow
them to move freely.
Explanation:
Metals usually contain very few electrons in their valence shells hence they easily give up these few valence electrons to yield metal cations.
In the metallic bond, metal cations are held together by electrostatic attraction between the metal ions and a sea of mobile electrons.
Since metals give up their electrons easily, it is very easy for them to participate in metallic bonding. They give up their electrons easily because their valence shells are mostly empty, metal valence shells usually contain only a few electrons.
Both believe that an atom contains negative charges and positive charges.
But both were different in the placement of charges