Answer:
Part a)

Part b)
t = 12 s
Explanation:
Part a)
Tension in the rope at a distance x from the lower end is given as

so the speed of the wave at that position is given as

here we know that

now we have


Part b)
time taken by the wave to reach the top is given as




<span>The distance between wave crests is called wavelength. It is a characteristic shared by waves of all kinds, including ocean waves and sound waves. Wavelength is measured from the highest point, or summit, of one wave's crest to the summit of the next wave's <span>crest</span></span>
<span><span>hope this helps</span></span>
Solution :
The given figure is a loop of a wire with a resistor.
When the switch S is closed for long time and is suddenly opened, the direction of the induced current can be find out by using the rule of right hand screw. According to the right hand screw rule, the direction of the magnetic field at the loop is in the direction that points outwards. The strength of the current rapidly decreases as it is switch off and the magnetic flux that is linked with the loop wire will also decrease.
According to the Lenz's law, the direction of the induced current must be such
the decrease in the magnetic flux. It means the direction of the magnetic field must be outwards and also normal to the plane of the screen. The direction of the induced anti clockwise or from right to left in the resistance.
We simply asked to name three uses for mercury.
The most common and well-known use of mercury is the production of thermometers. It's property to stay liquid at room temperature makes it ideal for a temperature indicator. However, the use of mercury is thermometers has been phased out due to health hazards.
It is also used to form an amalgam which is the result of its combination with silver or gold. Mercury has been used to mine gold and silver. This application has also been phased out.
Today's use of mercury includes mercury-vapor lamps which are the bright lamps used in high-ways.
By definition, the law of conservation of energy states that:
Ei = Ef
Where,
Ei: initial energy
Ef: final energy
Therefore, no matter the type of energy, always the final energy is equal to the final energy.
Energy can be transformed into another type of energy. For example, the potential energy can be transformed into kinetic energy.
Also, energy is not created, nor destroyed.
Answer:
The following is not true about the Law of Conservation of Energy:
A. It states that the total energy in the universe keeps increasing.