1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
77julia77 [94]
3 years ago
5

A cylinder with a 6.0 in. diameter and 12.0 in. length is put under a compres-sive load of 150 kips. The modulus of elasticity f

or this specimen is 8,000 ksiand Poisson’s ratio is 0.35. Calculate the final length and the final diameter ofthis specimen under this load assuming that the material remains within thelinear elastic region.
Engineering
1 answer:
jeka943 years ago
8 0

Answer:

Final Length = 11.992 in

Final Diameter = 6.001 in

Explanation:

First we calculate the cross-sectional area:

Area = A = πr² = π(3 in)² = 28.3 in²

Now, we calculate the stress:

Stress = Compressive Load/Area

Stress = - 150 kips/28.3 in²

Stress = -5.3 ksi

Now,

Modulus of Elasticity = Stress/Longitudinal Strain

8000 ksi = -5.3 ksi/Longitudinal Strain

Longitudinal Strain = -6.63 x 10⁻⁴

but,

Longitudinal Strain = (Final Length - Initial Length)/Initial Length

-6.63 x 10⁻⁴ = (Final Length - 12 in)/12 in

Final Length = (-6.63 x 10⁻⁴)(12 in) + 12 in

<u>Final Length = 11.992 in</u>

we know that:

Poisson's Ratio = - Lateral Strain/Longitudinal Strain

0.35 = - Lateral Strain/(- 6.63 x 10⁻⁴)

Lateral Strain = (0.35)(6.63 x 10⁻⁴)

Lateral Strain = 2.32 x 10⁻⁴

but,

Lateral Strain = (Final Diameter - Initial Diameter)/Initial Diameter

2.32 x 10⁻⁴ = (Final Diameter - 6 in)/6 in

Final Diameter = (2.32 x 10⁻⁴)(6 in) + 6 in

<u>Final Diameter = 6.001 in</u>

You might be interested in
A. For a 200g load acting vertically downwards at point B’, determine the axial load in members A’B’, B’C’, B’D’, C’D’ and C’E’.
Nonamiya [84]

Answer:

attached below

Explanation:

7 0
3 years ago
WHAT IS THIS PLSSSSSS HELP
alekssr [168]

Answer:

It looks like... A machine that reads electric pulse and surge... Not sure though.

Explanation:

8 0
3 years ago
Steam at 20 bars is in the saturated vapor state (call this state 1) and contained in a pistoncylinderdevice with a volume of 0.
saul85 [17]

Answer:

Explanation:

Given that:

<u>At state 1:</u>

Pressure P₁ = 20 bar

Volume V₁ = 0.03 \mathbf{m^{3}}

From the tables at saturated vapour;

Temperature T₁ = 212.4⁰ C  ; v_1 = vg_1 = 0.0996 \mathbf{m^{3}} / kg

The mass inside the cylinder is m = 0.3 kg, which is constant.

The specific internal energy u₁ = ug₁ = 2599.2 kJ/kg

<u>At state 2:</u>

Temperature T₂ = 200⁰ C

Since the 1 - 2 occurs in an isochoric process v₂ = v₁ = 0.099 \mathbf{m^{3}} / kg

From temperature T₂ = 200⁰ C

v_f_2 = 0.0016 \ m^3/kg  

vg_2 = 0.127 \ m^3/kg  

Since  vf_2 < v_2 , the saturated pressure at state 2 i.e. P₂ = 15.5 bar

Mixture quality x_2 = \dfrac{v_2-vf_2}{vg_2 -vf_2}

x_2 = \dfrac{(0.099-0.0016)m^3/kg}{(0.127 -0.0016) m^3/kg}

x_2 = \dfrac{(0.0974)m^3/kg}{(0.1254) m^3/kg}

\mathsf{x_2 =0.78}

At temperature T₂, the specific internal energy u_f_2 = 850.6 \ kJ/kg , also ug_2 = 2594.3 \ kJ/kg

Thus,

u_2 = uf_2 + x_2 (ug_2 -uf_2)

u_2 =850.6  +0.78 (2594.3 -850.6)

u_2 =850.6  +1360.086

u_2 =2210.686 \ kJ/kg

<u>At state 3:</u>

Temperature T_3=T_2 = 200 ^0 C ,

V_3 = 2V_1 = 0.06 \ m^3

Specific volume v_3 = 0.2  \ m^3/kg

Thus; vg_3 =vg_2 = 0.127 \ m^3/kg ,

SInce v_3 > vg_3, therefore, the phase is in a superheated vapour state.

From the tables of superheated vapour tables; at v_3 = 0.2  \ m^3/kg and T₃ = 200⁰ C

The pressure = 10 bar and v =0.206 \ m^3/kg

The specific internal energy u_3 at the pressure of 10 bar = 2622.3 kJ/kg

The changes in the specific internal energy is:

u_2-u_1

= (2210.686 - 2599.2) kJ/kg

= -388.514 kJ/kg

≅ - 389 kJ/kg

u_3-u_2

= (2622.3 - 2210.686)  kJ/kg

= 411.614 kJ/kg

≅ 410 kJ/kg  

We can see the correct sketches of the T-v plot showing the diagrammatic expression in the image attached below.

3 0
3 years ago
What type of foundation do engineers use for a small and light building and when the load of the building is borne by columns? A
ikadub [295]

Answer:

A.

Explanation:

Individual footings are the commonest, and they are often used if the load of the building is borne by columns. Typically, every column will have an own footing. The footing is usually only a rectangular or square pad of concrete on which the column is erected

8 0
3 years ago
Why can you anodise Aluminium and Magnesium alloys?
Anastasy [175]

Explanation:

Anodizing :

 Anodizing is the surface protection process from the environment.As we know that due to external environment surfaces get corrodes .By using anodizing process the outer surface  of material coated by using different type of coating material.

As the name stand that in the anodizing process there will be anode and oxygen.in this process oxidation of material take place .

Oxides of aluminium and magnesium are stable that is why they anodized by this process.

4 0
4 years ago
Other questions:
  • Which solution causes cells to shrink
    13·1 answer
  • What is the entropy of a closed system in which 25 distinguishable grains of sand are distributed among 1000 distinguishable equ
    5·2 answers
  • A railroad runs form city A to city B, a distance of 800km, through mountainous terrain. The present one-way travel time (includ
    13·1 answer
  • The current flow in an NMOS transistor is due to one of the following:
    11·1 answer
  • 1. ¿Cómo esta simbolizada la Cena en el Antiguo testamento?
    11·1 answer
  • What is the relationship between compressor work and COPR?
    14·1 answer
  • Tech B says that long-term fuel trims that are positive means that the PCM is leaning out the fuel mixture from the base pulse-w
    11·2 answers
  • Which type of line is represented by thin, short dashes?
    9·1 answer
  • Aqueous cleaners are ________ parts cleaning agents.
    15·1 answer
  • A school bus with its flashing red signals on has stopped on a non-divided highway; you must?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!