Answer:
Note that there is little variation among the transition metals. Electronegativities generally decrease from top to bottom within a group due to the larger atomic size. Of the main group elements, fluorine has the highest electronegativity (EN = 4.0) and cesium the lowest (EN = 0.79).
Answer:
2.36 x 10^6 J
Explanation:
Tc = 0°C = 273 K
TH = 22.5°C = 295.5 K
Qc = heat used to melt the ice
mass of ice, m = 85.7 Kg
Latent heat of fusion, L = 3.34 x 10^5 J/kg
Let Energy supplied is E which is equal to the work done
Qc = m x L = 85.7 x 3.34 x 10^5 = 286.24 x 10^5 J
Use the Carnot's equation


QH = 309.8 x 10^5 J
W = QH - Qc
W = (309.8 - 286.24) x 10^5
W = 23.56 x 10^5 J
W = 2.36 x 10^6 J
Thus, the energy supplied is 2.36 x 10^6 J.
Answer:
The answer to your question is:
a) t = 3.81 s
b) vf = 37.4 m/s
Explanation:
Data
height = 71.3 m = 234 feet
t = 0 m/s
vf = ?
vo = 0 m/s
Formula
h = vot + 1/2gt²
vf = vo + gt
Process
a)
h = vot + 1/2gt²
71.3 = 0t + 1/2(9.81)t²
2(71.3) = 9,81t²
t² = 2(71.3)/9.81
t² = 14.53
t = 3.81 s
b)
vf = 0 + (9.81)(3.81)
vf = 37.4 m/s
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.
Answer:
The force needed is the weight of the rock minus the buoyant force.
Explanation: