Answer: 1.
: oxidation reduction
2.
: precipitation
3.
: Double displacement
Explanation:
Oxidation-reduction reaction or redox reaction is defined as the reaction in which oxidation and reduction reactions occur simultaneously.
Oxidation reaction is defined as the reaction in which a substance looses its electrons. The oxidation state of the substance increases.Reduction reaction is defined as the reaction in which a substance gains electrons. The oxidation state of the substance gets reduced.

Double displacement reaction is defined as the reaction where exchange of ions takes place. Double displacement reaction in which one of the product remain in solid form are represented by (s) after their chemical formulas. Such double displacement reaction are called as precipitation reaction.

Double displacement reaction is defined as the reaction where exchange of ions takes place.

Single displacement reaction is defined as the reaction where more reactive element displaces a less reactive element from its chemical reaction.
Decomposition reaction is defined as the reaction where a single substance breaks down into two or more simpler substances.
Synthesis/Combination reaction is defined as the reaction where substances combine in their elemental state to form a single compound.
<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
Answer: Option (A) is the correct answer.
Explanation:
Force acting on a dam is as follows.
F =
.......... (1)
Now, when we double the depth then it means H is increasing 2 times and then the above relation will be as follows.
F' = 
F' =
........... (2)
Now, dividing equation (1) by equation (2) as follows.
=
Cancelling the common terms we get the following.
=
4F = F'
Thus, we can conclude that if doubled the depth of the dam the hydrostatic force will be 4F.
Letter d, because they are both alkali metals (group one)
Hffgbhv vice uvula Gn kick kill is Lal Lal lam Lal lisp loco num Mann ight isms genus in I icon 25