Avogadro's number represents the number of units in one mole of any substance. This has the value of 6.022 x 10^23 units / mole. This number can be used to convert the number of atoms or molecules into number of moles. We do as follows:
10 mol NH3 ( 6.022 x 10^23 molecules / 1 mol ) = 6.022x10^24 molecules NH3
Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.
Explanation:
The value of equilibrium constant doesn't change when a catalyst is added.
Equilibrium constant depends on Concentration of reactants , Pressure and Temperature.
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>