Answer:
11.58 L of N₂
Explanation:
We'll begin by calculating the number of mole in 37.2 g of magnesium. This can be obtained as follow:
Mass of Mg = 37.2 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 37.2 / 24
Mole of Mg = 1.55 moles
Next, we shall write the balanced equation for the reaction. This is illustrated below:
3Mg + N₂ —> Mg₃N₂
From the balanced equation above,
3 moles of Mg reacted with 1 mole of N₂.
Therefore, 1.55 moles of Mg will react with = (1.55 × 1)/3 = 0.517 mole of N₂
Thus, 0.517 mole of N₂ is need for the reaction.
Finally, we shall determine the volume of N₂ needed for the reaction as follow:
Recall:
1 mole of a gas occupies 22.4 L at STP.
1 mole of N₂ occupied 22.4 L at STP.
Therefore, 0.517 mole of N₂ will occupy = 0.517 × 22.4 = 11.58 L at STP
Thus, 11.58 L of N₂ is needed for the reaction.
1.35 mole of K₂SO₄ contain 2.7 moles of cation.
Cations are positive ions. They are the ions of metallic elements.
To obtain the answer to the question, we'll begin by calculating the number of mole of cations in 1 mole of K₂SO₄.
K₂SO₄ (aq) —> 2K⁺ (aq) + SO₄²¯ (aq)
<h3>Cation => K⁺</h3>
From the balanced equation above,
1 mole of K₂SO₄ contains 2 moles of K⁺ (i.e cation).
Finally, we shall determine the number of mole of cation in 1.35 mole of K₂SO₄. This can be obtained as follow:
1 mole of K₂SO₄ contains 2 moles of K⁺ (i.e cation).
Therefore, 1.35 mole of K₂SO₄ will contain = 1.35 × 2 = 2.7 moles of K⁺ (i.e cation).
Hence, we can conclude that 1.35 mole of K₂SO₄ contain 2.7 moles of cation
Learn more: brainly.com/question/24707125
Question:
Which of the following statements correctly describe(s) the driving forces for diffusion of Na+ and K+ ions through their respective channels? Select all that apply.
A)The diffusion of Na+ ions into the cell is facilitated by the Na+ concentration gradient across the plasma membrane.
B)The diffusion of Na+ ions into the cell is impeded by the electrical gradient across the plasma membrane.
C)The diffusion of K+ ions out of the cell is impeded by the K+ concentration gradient across the plasma membrane.
D)The diffusion of K+ ions out of the cell is impeded by the electrical gradient across the plasma membrane. The electrochemical gradient is larger for Na+ than for K+.
Answer:
"The concentration gradient and the electro-chemical gradient" describes the driving forces for diffusion of Na+ and K+ ions through their respective channels
Explanation:
The Na ions diffusion inside the cell is facilitated by the concentration gradient of the Na ions which is present across the plasma membrane. Hence, the diffusion of the K ions which is present outside the cell and will be impeded due to the electrical gradient which is present near the plasma membrane. Thus, the electro-chemical gradient is greater as compared to the Na ion than that of the K ion.
Answer:
1. Students need to measure masses of the items.
2. Put baking soda and vinegar in a plastic bag and close it.
3. Mix the two, allowing for a reaction to occur.
4. Figure the mass of the plastic bag while the two components are inside.
5. The combined mass should be equal to what each weighed on their own.
Explanation:
To create the liquid and superfluid states you cool down helium gas to a few degrees above absolute zero