Answer:
0.546 ohm / μm
Explanation:
Given that :
N = 1.015 * 10^17
Electron mobility, u = 3900
Hole mobility, h = 1900
Ng = 4.42 x10^22
q = 1.6*10^-19
Resistivity = 1/qNu
Resistivsity (R) = 1/(1.6*10^-19 * 1.015 * 10^17 * 3900)
= 0.01578880889 ohm /cm
Resistivity of germanium :
R = 1 / 2q * sqrt(Ng) * sqrt(u*h)
R = 1 / 2 * 1.6*10^-19 * sqrt(4.42 x10^22) * sqrt(3900*1900)
R = 1 /0.0001831
R = 5461.4964 ohm /cm
5461.4964 / 10000
0.546 ohm / μm
Answer:
the thickness of the mica is 6.64μm
Explanation:
By definition we know that the phase between two light waves that are traveling on different materials (in this case also two) is given by the equation

Where
L = Thickness
n = Index of refraction of each material

Our values are given as

Replacing our values at the previous equation we have


the thickness of the mica is 6.64μm
Answer:

ω = 0.0347 rad/s²
a ≅ 1.07 m/s²
Explanation:
Given that:
mass of the model airplane = 0.741 kg
radius of the wire = 30.9 m
Force = 0.795 N
The torque produced by the net thrust about the center of the circle can be calculated as:

where;
F represent the magnitude of the thrust
r represent the radius of the wire
Since we have our parameters in set, the next thing to do is to replace it into the above formula;
So;


(b)
Find the angular acceleration of the airplane when it is in level flight rad/s²

where;
I = moment of inertia
ω = angular acceleration
The moment of inertia (I) can also be illustrated as:

I = ( 0.741) × (30.9)²
I = 0.741 × 954.81
I = 707.51 Kg.m²

Making angular acceleration the subject of the formula; we have;

ω = 
ω = 0.0347 rad/s²
(c)
Find the linear acceleration of the airplane tangent to its flight path.m/s²
the linear acceleration (a) can be given as:
a = ωr
a = 0.0347 × 30.9
a = 1.07223 m/s²
a ≅ 1.07 m/s²
There are several information's already given in the question. The answer can be easily deduced using those information's.
Time = 3.0 * 10-3 seconds
Impulse = 0.30 newton
Then
Force = Impulse/Time
= 0.30/3.0 * 10-3
= 1 * 10^3 newtons.
I hope the above procedure is clear for you to understand and it has actually come to your great help.