1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexxandr [17]
2 years ago
12

Question 19 of 20

Physics
1 answer:
Alex Ar [27]2 years ago
3 0
They might be an example of Lubricants
You might be interested in
you are piloting a small plane and you want to reach an airport 450 km due south in 3.0 h a wind is blowing from the west 50.0 k
alex41 [277]

Answer:

You should choose airspeed 158.11 km/h at 18.4° west of south

Explanation:

The distance to the air port is 450 km due to south

You should to reach the airport in 3 hours

→ Velocity = distance ÷ time

→ Distance = 450 km , time = 3 hours

→ The velocity of your plane = 450 ÷ 3 = 150 km/h due to south

A wind is blowing from west 50 km/h

We need to know what heading and airspeed you should choose to

reach your destination

At first we must find the resultant velocity of your plane and the wind

The south and west are perpendicular, then the resultant velocity is

→ v_{R}=\sqrt{(v_{p})^{2}+(v_{w})^{2}}

→ v_{p}=150 km/h ,  v_{w}=50 km/h

→ v_{R}=\sqrt{(150)^{2}+(50)^{2}}=158.11 km/h

To cancel the velocity of the wind, the pilot should maintain the velocity

of the plane at 158.11 km/h

The direction of the velocity is the angle between the resultant velocity

and the vertical (south)

→ The direction of the velocity is tan^{-1}\frac{50}{150}=18.4°

The direction of the velocity is 18.4° west of south

<em>You should choose airspeed 158.11 km/h at 18.4° west of south</em>

8 0
3 years ago
An object that weighs 2.450 N is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period o
Viktor [21]

Answer:

Spring constant, k = 24.1 N/m

Explanation:

Given that,

Weight of the object, W = 2.45 N

Time period of oscillation of simple harmonic motion, T = 0.64 s

To find,

Spring constant of the spring.

Solution,

In case of simple harmonic motion, the time period of oscillation is given by :

T=2\pi\sqrt{\dfrac{m}{k}}

m is the mass of object

m=\dfrac{W}{g}

m=\dfrac{2.45}{9.8}

m = 0.25 kg

k=\dfrac{4\pi^2m}{T^2}

k=\dfrac{4\pi^2\times 0.25}{(0.64)^2}

k = 24.09 N/m

or

k = 24.11 N/m

So, the spring constant of the spring is 24.1 N/m.

6 0
2 years ago
An object is dropped from rest from a 70.6 m tower. Air resistance is negligible. After 0.32 seconds, what is magnitude and dire
dem82 [27]

Answer:

<em>1,378.9ms²</em>

Explanation:

Given the following

Distance S = 70.6m

Time t = 0.32secs

Initial velocity = 0m/s

Required

Acceleration

Using the equation of motion

S = ut+1/2at²

Substitute

70.6 = 0+1/2a(0.32)²

70.6 = 0.0512a

a = 70.6/0.0512

a = 1,378.9

<em>Hence the acceleration is 1,378.9ms²</em>

7 0
2 years ago
A bowling ball moving with a velocity of 5V to the right collides elastically with a beach ball moving at a velocity 2V to the l
katen-ka-za [31]

Answer:

v'_2=3V

Explanation:

From the question we are told that:

Bowling ball Speed v_1=5 m/s

Beach ball Speed v_2=2 m/s

Let The Mass be equal i.e

 M_1=M_2

Therefore

Generally the equation for Velocity of beach ball after collision v'_2 is mathematically given by

Since Velocity is Vector Quantity

Therefore

 v'_2=v_1-v_2

 v'_2=5-2

 v'_2=3V

3 0
3 years ago
An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
OverLord2011 [107]

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×10^{-4} m

dynamic viscosity = 1.75 ×10^{-5} Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ \frac{du}{dy}

so

= µ  \frac{v}{h}   ............1

put here value

= 1.75×10^{-5} × \frac{v}{10^{-4}}

= 0.175 v

and

area between air and puck is given by

Area = \frac{\pi }{4} d^{2}

area  =  \frac{\pi }{4} 0.1^{2}

area = 7.85 × \frac{v}{10^{-3}} m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × 10^{-3}

force = 1.374 × 10^{-3} v    

and now apply newton second law

force = mass × acceleration

- force = mass \frac{dv}{dt}

- 1.374 × 10^{-3} v = 0.03 \frac{0.9v - v }{t}

t =  \frac{0.1 v * 0.03}{1.37*10^{-3} v}

time = 2.18

so time required after impact for a puck is 2.18 seconds

3 0
3 years ago
Other questions:
  • A certain fuel-efficient hybrid car gets gasoline mileage of 55.0 mpg (miles per gallon). (a) If you are driving this car in Eur
    12·1 answer
  • If a sprinter has an average acceleration of 9.5 m/s2, how long does it take for the person to go from rest to 10 m/s
    15·1 answer
  • The displacement of a wave traveling in the positive x-direction is y(x, t)|= (3.5 cm)cos(2.7x − 92t), where x is in m and t is
    13·1 answer
  • What is the accelration of a 6.4 kg bowling ball if a force of 12n is applied to ir
    8·1 answer
  • Period of a 60Hz circuit
    9·1 answer
  • A squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. It is initially at positio
    11·1 answer
  • A rocket at fired straight up from rest with a net upward acceleration of 20 m/s2 starting from the ground. After 4.0 s, the thr
    9·1 answer
  • If an object reflects all of the wavelengths of visible light you would see what color
    12·1 answer
  • If a bouncing ball has a total energy of 20 J and a kinetic energy of 5 J, the ball’s potential energy is
    15·1 answer
  • A 9.0x10^-2kg ice cube at 0.0 degrees Celsius is dropped into a styrofoam cup holding 0.35 kg of water at 13 degrees Celsius.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!