As per Gauss Law
Net flux through enclosed surface is

here through this hemisphere total flux will pass through two portions
1). from the curved surface
2). from flat circular base
so now we have

given that


now we have



Answer:
Distance = 25000000 miles
Time = 50 hours
Explanation:
Venus is the closest planet to Earth. It is about 25 million miles away from Earth. Its precise distance depends on where both Venus and Earth are in their respective orbits
Given that
Speed V = 500000 mph
Distance d = 25 000,000 miles
Speed = distance/ time
Time = distance/speed
Time = 25000000/500000
Time = 50 hours
It will therefore take 50 hours to get to venus at that speed.
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor