Answer:
a) zero b) zero
Explanation:
Newton's first law tells us that a body remains at rest or in uniform rectilinear motion, if a net force is not applied on it, that is, if there are no applied forces or If the sum of forces acting is zero. In this case there is a body that moves with uniform rectilinear motion which implies that there is no net force.
Answer:
a. Rotational speed of the drill = 375.96 rev/min
b. Feed rate = 75 mm/min
c. Approach allowance = 3.815 mm
d. Cutting time = 0.67 minutes
e. Metal removal rate after the drill bit reaches full diameter. = 9525 mm³/min
Explanation:
Here we have
a. N = v/(πD) = 15/(0.0127·π) = 375.96 rev/min
b. Feed rate = fr = Nf = 375.96 × 0.2 = 75 mm/min
c. Approach allowance = tan 118/2 = (12.7/2)/tan 118/2 = 3.815 mm
d. Approach allowance T∞ =L/fr = 50/75 = 0.67 minutes
e. R = 0.25πD²fr = 9525 mm³/min.
Answer:
26 feet and longer boats that have garbage dumping placard must be prominently posted and the boats which are 40 feet and longer must have the written waste management plan.
Answer:
stainless steel
Explanation:
Conductivity refers to the degree to which a specified material conducts electricity. It is the ratio of the current density in the material and the electric field.
The thermal conductivity of a material measures its ability to conduct heat.
In materials of low thermal conductivity, heat transfer occurs at a lower rate as compared to materials of high thermal conductivity.
Thermal expansion of the material refers to its tendency to change its shape, area, and volume as a result of change in temperature.
The electrical resistance of a material refers to the measure of its opposition to the flow of electric current.
<u>Stainless steel</u> has a lower coefficient of thermal conductivity along with a higher coefficient of thermal expansion and higher electrical resistance.
Answer:
When an additional layer of insulation is applied to a cylindrical pipe or a spherical shell, the insulation layer works to increase its conduction resistance but at the same time, lowers the convection resistance of the surface.
Explanation:
Generally, when more insulation is added to a wall, the resulting effect is that heat transfer decreases. With increasing thickness of the insulation, the heat transfer rate becomes lesser. This is because the thermal resistance of the wall becomes more with the added insulation, wherein the heat transfer area and convection resistance aren't affected.
However, a different scenario occurs when an additional layer of insulation is applied to a cylindrical pipe or spherical shell. The conduction resistance increases, but the surface convection resistance decreases since the outer surface area for convection also increases and does not remain constant.
Overall, the heat transfer from the cylindrical pipe or spherical shell may increase or decrease, which depends on the effect that dominates.