Brake system
Explanation: the engine doesn’t need to be running to make the brake system work the brake system it’s independent
Answer:
e.Fire resistance,Inexpensive,Non-toxic.
Explanation:
Desirable hydraulic property of fluid as follows
1. Good chemical and environment stability
2. Low density
3. Ideal viscosity
4. Fire resistance
5. Better heat dissipation
6. Low flammability
7. Good lubrication capability
8. Low volatility
9. Foam resistance
10. Non-toxic
11. Inexpensive
12. Demulsibility
13. Incompressibility
So our option e is right.
Answer:
0.00650 Ib s /ft^2
Explanation:
diameter ( D ) = 0.71 inches = 0.0591 ft
velocity = 0.90 ft/s ( V )
fluid specific gravity = 0.96 (62.4 ) ( x )
change in pressure ( P ) = 0 because pressure was constant
viscosity = (change in p - X sin∅ )
/ 32 V
= ( 0 - 0.96( 62.4) sin -90 ) * 0.0591 ^2 / 32 * 0.90
= - 59.904 sin (-90) * 0.0035 / 28.8
= 0.1874 / 28.8
viscosity = 0.00650 Ib s /ft^2
Answer is an increase in pressure will cause an decrease in the pressure
Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV