Resistance = voltage / current.
That's. 120v / 14A = 8.57 ohms.
By the way, voltage doesn't "run through" anything. Current does. That would be the 14 Amps.
The particle has
and
, and is undergoing a constant acceleration of
.
This means its position at time
is given by the vector function,

![\implies\vec r(t)=\left[4\,\mathrm m+\left(2\dfrac{\rm m}{\rm s}\right)t-\left(1\dfrac{\rm m}{\mathrm s^2}\right)t^2\right]\,\vec\imath-\left(1\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\vec\jmath](https://tex.z-dn.net/?f=%5Cimplies%5Cvec%20r%28t%29%3D%5Cleft%5B4%5C%2C%5Cmathrm%20m%2B%5Cleft%282%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%5Cright%29t-%5Cleft%281%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5E2%5Cright%5D%5C%2C%5Cvec%5Cimath-%5Cleft%281%5Cdfrac%7B%5Crm%20m%7D%7B%5Cmathrm%20s%5E2%7D%5Cright%29t%5E2%5C%2C%5Cvec%5Cjmath)
The particle crosses the x-axis when the
component is 0 for some time
, so we solve:




The negative square root introduces a negative solution that we throw out, leaving us with
or about 3.24 seconds after it starts moving.
Answer:
60mph=26.8224meters per second
Explanation:
Answer:
Explanation:
I = V/R = 120 V/ 50 Ω = 2.4 A
P = VI = 120(2.4) = 288 W = 288 J/s
288 J/s (15 min(60s / min)) = 259,200 J
or the electric company would charge for
288 W / (1000 W/kW)•(15/60) hr = 0.072 kW•hr
At $0.20 / kW•hr, that would be under 1½ cents
Answer:
I believe it's called rolling friction