Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm =
-Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s
Answer:
Explanation:
Both are contact forces arising at the interface between two bodies. In the fluid this interface might be irregular, and it completely surrounds a submerged object. For a solid it is usually a single flat surface - but it can be a collection of surfaces, which do not need to be flat or regular, and which can surround the object
Upthrust occurs at a fluid-solid interface whereas normal reaction occurs at a solid-solid surface. However, it is possible to generate the same fluid-like phenomenon of upthrust by immersing a solid object in sand or small beads and agitating them to simulate the pressure of atoms. With
Answer:
The automated system that uses an automated work cell controlled by electronic signals from a common centralized computer facility is "Robotics"
Explanation:
Robotics is an advanced technology fully automated which uses electronic sensors incorporated with the combination of control into mechanical systems greatly enhancing the performance and flexibility of the systems. This is possible with the advances in hardware, software, and control programming systems which amounts to extensive automation from a common centralized computer facility.