Answer:
the angular velocity of the car is 12.568 rad/s.
Explanation:
Given;
radius of the circular track, r = 0.3 m
number of revolutions per second made by the car, ω = 2 rev/s
The angular velocity of the car in radian per second is calculated as;
From the given data, we convert the angular velocity in revolution per second to radian per second.

Therefore, the angular velocity of the car is 12.568 rad/s.
Answer:
18.63 N
Explanation:
Assuming that the sum of torques are equal
Στ = Iα
First wheel
Στ = 5 * 0.51 = 3 * (0.51)² * α
On making α subject of formula, we have
α = 2.55 / 0.7803
α = 3.27
If we make the α of each one equal to each other so that
5 / (3 * 0.51) = F2 / (3 * 1.9)
solve for F2 by making F2 the subject of the formula, we have
F2 = (3 * 1.9 * 5) / (3 * 0.51)
F2 = 28.5 / 1.53
F2 = 18.63 N
Therefore, the force F2 has to 18.63 N in order to impart the same angular acceleration to each wheel.
Answer:
physical quantity
Explanation:
All quantity in term of which laws of physics are described and can be measured is called physical quantity
Answer:
6.16 m/s
0.0105 m
Explanation:
Let the ground 0 for potential reference be at where the spring is compress 0.24 m. The the man would jump from a height h = 2.5 + 0.24 = 2.74 m from it. We can apply the law of energy conservation knowing that as the man jumps, his potential energy converts to kinetic energy, then finally to elastic energy:


where m = 80 kg is the man mass, g = 9.81 m/s2 is the gravitational acceleration, h = 2.74 m is the potential distance he travels, k N/m is the spring constant and x = 0.24 is the distance it compresses



Similarly at the position where it compresses by 0.12 m, it's 0.24 - 0.12 = 0.12 m far from ground 0.







When he steps gently, then his gravity force would equal to his spring force


I believe the answer is 3 Newtons!