Answer:
Gasification refers to the conversion of coal to a mixture of gases, including carbon monoxide, hydrogen, methane, and other hydrocarbons, depending on the conditions involved.
Answer:6.94
Explanation:
Molar mass of CaCO3=40+12+16×3
=40+12+48=100g/mol
Moles=mass of substance/molar mass
=97mg/100g=0.097/100=0.00097moles/L.
PH=-log[CaCo3]=-log(0.00097)=6.94
P.s it's log to base e
Answer:

Explanation:
When calculating an empirical formula from percentages, assume you have a 100g sample. This allows you to convert the percentages directly to grams, because X % of 100g is X grams.
So:
24.42 % = 24.42 g Ca, 17.07% = 17.07g N, 58.5% = 58.5g O
The next step is to divide each mass by their molar mass to convert your grams to moles.
24.42/40.08 = 0.6092 mol
17.07/14.01 = 1.218 mol
58.85/15.99 = 3.680 mol
Then you will divide all of your mol values by the SMALLEST number of moles. This gives you whole numbers that are the mole ratio (subcripts) of the empircal formula.
0.6092 mol/0.6092 mol = 1
1.218 mol/0.6092 mol = 2
3.680 mol/0.6092 mol = 6
So the empirical formula is 
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
Molarity= moles/liter, so you would need 3mol KBr/1 liter
(0.3M)(1L)= 0.3mol KBr