As stated, the impulse and momentum definitions will be used to later find the value of time through the force of gravity. According to the theory, the impulse formula is given as,

Here,
F = Force
Change in time
Now using the impulse theorem we have that,
Change in Impulse = Change in momentum
(1)
The change in momentum is given as



The force due to gravity is through the Newton's second law

Here,
m = mass
g = Acceleration due to gravity
Substitute the value in (1)




Therefore it will take 0.51s.
<span> <span>We will need to work with the components of the velocity, in the x and the y direction. We will say up is positive so g is -9.81 m/s^2.
Given that the angle was 32 degrees:
Velocity up (in the y direction) is 55 m/s * sin 32 = 29.15 m/s
And
Velocity forward (in the x direction) is 55 m/s * cos 32 = 46.64 m/s
The acceleration of gravity, -9.81 m/s2 continuously decreases the velocity in the y direction. At the maximum height, the velocity will be zero. This should make sense, for as soon as the decreasing velocity becomes negative, the arrow will start to fall.
We have v = v(0) + at
And we set this to zero and solve for t:
0 = 29.15 + -9.81t
9.81t = 29.15
t = 2.97 seconds
To calculate height at this point, we use the equation that calculates position based on time, acceleration, and initial velocity (we could use an alternate too, an equation derived from the one we are now using and v = v(0) + at.
x = x(0) + v(0)t + (1/2)at^2
x = 0 + 29.15 * 2.97 + 0.5 9.81 (2.97)^2
x = 43.30 m
For a projectile, the plot of distance traveled in the upward direction is a parabola, and it takes the same amount of time to come down as it did to go up.
We can double 2.97 to get the time of impact on the target at 2(2.97) = 5.94 seconds
(Alternately, if you like, you can solve
0 = 0 + 29.15t + 0.5 9.81 t^2
And find that the two roots are 0 and 5.94).
http://www.math.com/students/calculators... will do the quadratic for you.
Given a horizontal velocity of 46.64 m/s, we can calculate
46.64 m/s (5.94 s) = 277 m for the distance of the target.</span></span>
Answer:
There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. :/
Explanation:
Answer:
15.8m/s
Explanation:
This problem can be solved by taking into account the conservation of the momentum. In this case the momentum of the astronaut and the bag of tools must equal the momentum of the astronaut and the bag of tool after the astronaut throws the bag.
Hence, we have

where ma and va are the mass and velocity of the astronaut, mb and vb are the mass and velocity of the bag, after the astronaut throw the bag. The velocity v is the velocity where the astronaut has the bag of tool
By taking into account that the velocity of the astronaut must be zero to keep him near of the space station, we have that vb = 0.
Thus

Complete Question
The complete question iws shown on the first uploaded image
Answer:
a

b

Explanation:
Now looking at the diagram let take that the magnetic field is moving in the x-axis
Now the magnetic force is mathematically represented as
x B
Note (The x is showing cross product )
Note the force(y-axis) is perpendicular to the field direction (x-axis)
Now when the loop is swinging forward
The motion of the loop is from y to z to to x to y
Now since the force is perpendicular to the motion(velocity) of the loop
Hence the force would be from z to y and back to z
and from lenze law the induce current opposes the force so the direction will be from y to z to x
Now when the loop is swinging backward
The motion of the induced current will now be x to z to y