Answer:
The resulting magnetic force on the wire is -1.2kN
Explanation:
The magnetic force on a current carrying wire of length 'L' with current 'I' in a magnetic field B is
F = I (L*B)
Finding (L * B) , where L = (2, 0, 0)m , B = (30, -40, 0)
L x B =
= (0, 0, -80)
we can now solve
F = I (L x B) = I (-80)
F = -1200 kmN
F = -1200 kN * 10⁻³
F = -1.2kN
Answer:
A light-year is a unit of distance. It is the distance that light can travel in one year. Light moves at a velocity of about 300,000 kilometers (km) each second. So in one year, it can travel about 10 trillion km. More p recisely, one light-year is equal to 9,500,000,000,000 kilometers
Answer:
The electric field strength is 
Explanation:
Given that,
Magnetic field = 0.150 T
Speed 
We need to calculate the electric field strength
Using formula of velocity


Where, v = speed
B = magnetic field
Put the value into the formula



Hence, The electric field strength is 
To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
Answer:
(a) 
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:

where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:

(b)
Now, for 90% radiator blackbody at 2000 K:

<u>P = 0.816 Watt</u>