Answer:
A remote controlled (<em>or externally piloted) </em>sequence valve
Explanation:
First of all, a sequence valve is a pressure-operated valve that opens at an adjustable set pressure.
Sequence valves can be internally piloted or externally piloted.
- Internally piloted sequence valves are known as direct-acting sequence valve. This means that the pressure change they sense is from their main inlet valve.
- Externally piloted sequence valves have a pilot line in which the pilot signal to open the valve is from a source other than the line feeding it.
External pilot-operated sequence valves can be used to open and allow flow when a remote operation reaches a certain predetermined pressure.
The equation relevant to this is:
S(t) = So + Vot - At²/2 <span>
</span>
<span>Therefore
we can create two equations:
<span>S(t) = 90 = So - 4t - 16.1t² -->
eqtn 1</span>
<span>S(t+2) = 10 = So - 4(t+2) - 16.1(t+2)² --> eqtn 2</span>
</span>
<span>Expanding
eqtn 2:
10 = So - 4t - 8 - 16.1(t² + 4t + 4)
10 = So - 4t - 8 - 16.1t² - 64.4t - 64.4
10 + 8 + 64.4 = So - 68.4t - 16.1t²
<span>82.4 = So - 68.4t - 16.1t² -->
eqtn 3</span></span>
<span>
Subtracting eqtn 1 by eqtn 3:</span>
90 = So - 4t - 16.1t²
82.4 = So - 68.4t - 16.1t²
=> 7.6 = 64.4t
t = 0.118 s
Therefore calculating for initial height So:<span>
<span>82.4 = So - 68.4(0.118) - 16.1(0.118)²
<span>So = 90.7 ft</span></span></span>
Answer:
a) v(2) = 2m/s, v(3) = -2m/s
b) speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
c) 0 m/s
Explanation:
We can take the derivative of x(t) to find the equation of velocity
v(t) = x'(t) = 10 - 4t
(a) v(2) = 10 - 4*2 = 10 - 8 = 2 m/s
v(3) = 10 - 4*3 = 10 - 12 = -2 m/s
(b) The speed would be the same as velocity without the direction
speed at t = 2s is 2m/s
speed at t = 3s is 2m/s
(c) The average velocity between t = 2s and t = 3s is distance it travels over period of time


Answer:
Momentum after collision will be 6000 kgm/sec
Explanation:
We have given mass of the whale = 1000
Initial velocity v = 6 m/sec
It collides with other mass of 200 kg which is at stationary
Initial momentum of the whale = 1000×6 = 6000 kgm/sec
We have to find the momentum after collision
From conservation of momentum
Initial momentum = final momentum
So final momentum = 6000 kgm/sec
Based on how they each acted in the trials, the substance that would be the most metallic is B.