Boiling-point elevation is a colligative property.
That means, the the boiling-point elevation depends on the molar content (fraction) of solute.
The dependency is ΔTb = Kb*m
Where ΔTb is the elevation in the boiling point, kb is the boiling constant, and m is the molality.
A solution of 6.00 g of Ca(NO3) in 30.0 g of water has 4 times the molal concentration of a solution of 3.00 g of Ca(NO3)2 in 60.0 g of water.:
(6.00g/molar mass) / 0.030kg = 200 /molar mass
(3.00g/molar mass) / 0.060kg = 50/molar mass
=> 200 / 50 = 4.
Then, given the direct proportion of the elevation of the boiling point with the molal concentration, the solution of 6.00 g of CaNO3 in 30 g of water will exhibit a greater boiling point elevation.
Or, what is the same, the solution with higher molality will have the higher boiling point.
Answer: is C
Explanation:
Both the atomic mass and the atomic number increase from left to right
Answer:
B. Beta
Explanation:
Neutron -> proton = responsible by Beta particles.
Answer:
it's the third one
Explanation:
in the first one oxygen molecules aren't balanced
the second ok me oxygen isnt balanced
and the fourth one hydrogen isn't balanced
hope it helps ;)
Answer: Depending on the data and the patterns, sometimes we can see that pattern in a simple tabular presentation of the data. Other times, it helps to visualize the data in a chart, like a time series, line graph, or scatter plot.
Explanation:
1960 5.91
1970 5.59
1980 4.83
1990 4.05
2000 3.31
2010 2.60