Two factors determine whether a substance is a solid, a liquid, or a gas: The kinetic energies of the particles (atoms, molecules, or ions) that make up a substance. Kinetic energy tends to keep the particles moving apart. The attractive intermolecular forces between particles that tend to draw the particles together.
Answer:Esotericism
Explanation:
it’s something that’s in intentional out of body experience
The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.
The work done by the centripetal force during om complete revolution is 401.92 J.
<h3>What is centripetal force?</h3>
Centripetal force is a force that acts on a body undergoing a circular motion and is directed towards the center of the circle in which the body is moving.
To Calculate the work done by the centripetal force during one complete revolution, we use the formula below.
Formula:
- W = (mv²/r)2πr
- W = 2πmv²................... Equation 1
Where:
- W = Work done by the centripetal force
- m = mass of the ball
- v = velocity of the ball
- π = pie
From the question,
Given:
- m = 16 kg
- v = 2 m/s
- π = 3.14
Substitute these values into equation 1
Hence, The work done by the centripetal force during om complete revolution is 401.92 J.
Learn more about centripetal force here: brainly.com/question/20905151
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.
1)What is the force the left support exerts on the beam?
2)What is the force the right support exerts on the beam?
3)How much extra mass could the gymnast hold before the beam begins to tip?
Now the gymnast (not holding any additional mass) walks directly above the right support.
4)What is the force the left support exerts on the beam?
5)What is the force the right support exerts on the beam?</span>