Let's call

the mass of the glider and

the total mass of the seven washers hanging from the string.
The net force on the system is given by the weight of the hanging washers:

For Newton's second law, this net force is equal to the product between the total mass of the system (which is

) and the acceleration a:

So, if we equalize the two equations, we get

and from this we can find the acceleration:
A pure substance that is made up of only one kind of atom is called an element
Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s
Answer:
The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation:
Answer:
1) In a concave mirror parallel rays falling on it converges at F and 2F.
Explanation:
Spherical mirrors can be used for magnification of images. There are basically two types of spherical mirrors and they are converging mirror and diverging mirrors. The converging mirrors are also termed as concave mirrors and its basic work is to converge or combine light rays coming from a larger distance to a single point. Mostly the light beams falling parallel to the principle axis of the concave mirror will be acting as parallel rays. And when these parallel rays fall on the mirror, the converging point can be the focal point of the mirror.
Thus the location of converging point in concave mirrors will be based on the position or distance of object from the mirror. If the object distance is very far from the twice the focal length distance of mirror, then the converging point will be the focal point or F. And if the object is placed slightly greater than twice the distance of focal point, then the image will be obtained at 2F. But the parallel beams will be converging at F and 2F.