"60 kg" is not a weight. It's a mass, and it's always the same
no matter where the object goes.
The weight of the object is
(mass) x (gravity in the place where the object is) .
On the surface of the Earth,
Weight = (60 kg) x (9.8 m/s²)
= 588 Newtons.
Now, the force of gravity varies as the inverse of the square of the distance from the center of the Earth.
On the surface, the distance from the center of the Earth is 1R.
So if you move out to 5R from the center, the gravity out there is
(1R/5R)² = (1/5)² = 1/25 = 0.04 of its value on the surface.
The object's weight would also be 0.04 of its weight on the surface.
(0.04) x (588 Newtons) = 23.52 Newtons.
Again, the object's mass is still 60 kg out there.
___________________________________________
If you have a textbook, or handout material, or a lesson DVD,
or a teacher, or an on-line unit, that says the object "weighs"
60 kilograms, then you should be raising a holy stink.
You are being planted with sloppy, inaccurate, misleading
information, and it's going to be YOUR problem to UN-learn it later.
They owe you better material.
Answer:
approximately 5.8 seconds
Explanation:
if you where to time how fast a rock would fall 12 meters it would approximately be 5.8 seconds
To solve this problem we will apply the laws of Mersenne. Mersenne's laws are laws describing the frequency of oscillation of a stretched string or monochord, useful in musical tuning and musical instrument construction. This law tells us that the velocity in a string is directly proportional to the root of the applied tension, and inversely proportional to the root of the linear density, that is,

Here,
v = Velocity
= Linear density (Mass per unit length)
T = Tension
Rearranging to find the Period we have that


As we know that speed is equivalent to displacement in a unit of time, we will have to



Therefore the tension is 5.54N
Answer:
Being a plane mirror the Image is formed 3 metres beyond the mirror . So total distance is 3+3 = 6metres