Answer:
v = 31.3 m / s
Explanation:
The law of the conservation of stable energy that if there are no frictional forces mechanical energy is conserved throughout the point.
Let's look for mechanical energy at two points, the highest where the body is at rest and the lowest where at the bottom of the plane
Highest point
Em₀ = U = m g y
Lowest point
= K = ½ m v²
As there is no friction, mechanical energy is conserved
Em₀ =
m g y = ½ m v²
v = √ 2 g y
Where we can use trigonometry to find and
sin 30 = y / L
y = L sin 30
Let's replace
v = RA (2 g L sin 30)
Let's calculate
v = RA (2 9.8 100.0 sin30)
v = 31.3 m / s
The acceleration of an object is directly proportional to the net force acting on it. Zero net force means zero acceleration.
Given:
m = 0.240 kg = 240 g, the mass of O₂
V = 3.10 L = 3.10 x 10⁻³ m³, the volume
Because the molar mass of oxygen is 16, the number of moles of O₂ is
n = (240 g)/(2*16 g/mol) = 7.5 mol
As an ideal gas,
p*V = nRT
or
V = (nRT)/p
where R = 8.314 J/(mol-K)
When
p = 0.910 atm = (0.910 atm) * (101325Pa/atm) = 92205.75 Pa
T = 27 °C = (27 + 273) K = 300 K
then the volume is

V = (0.2029 m³)*(10³ L/m³) = 202.9 L
Answer: 203 liters
Answer:
i am pretty sure you are correct and so sorry if i am wrong i am just trying to help no need to give me anything if i am right but it might be the one abouve the one you chose :) please let me know if i am wrong or right
Explanation: