Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.
Answer:
A. Argon
Explanation:
It is a noble gas, a group which is not reactive.
Vo= 331+0.6T
360=331+0.6T
360-331=0.6T
29=0.6T
0.6T/29
T=6/290 so change it to simplest form and us formulas good luck
Answer: 0.5N
Explanation: if the system is at equilibrium, sum of the torque will be equal to zero.
But if they are not in equilibrium.
U will find the difference in the two torque
find the attached file for solution
Answer:
ΔE = 37.8 x 10^9 J
Explanation:
The energy required will increased the potential energy and increase the kinetic energy.
As the altitude change is fairly small compared to the earth radius, we can ASSUME that the average gravity will be a good representative
Gravity acceleration at altitude would be 9.8(6400²/8000²) = 6.272 m/s²
G(avg) = (9.8 + 6.272)/2 = 8.036 m/s²
ΔPE = mG(avg)Δh = 1000(8.036)(8e6 - 6.4e6) = 12.857e9 J
The centripetal force at orbit must be equal to the gravity force
mv²/R = mg'
v²/8.0e6 = 6.272
v² = (6.272(8.0e6)) = 50.2e6 m²/s²
The maximum velocity when resting on earth at the equator is about 460 m/s.
The change in kinetic energy is
ΔKE = ½m(vf² - vi²)(1000)
ΔKE = ½(1000)(50.2e6 - 460²) = 25e9 J
Total energy increase is
25e9 + 12.857e9 = 37.8e9 J