Answer:
See explaination
Explanation:
Kindly check attachment for the step by step solution of the given problem.
Answer: N has to be lesser than or equal to 1666.
Explanation:
Cost of parts N in FPGA = $15N
Cost of parts N in gate array = $3N + $20000
Cost of parts N in standard cell = $1N + $100000
So,
15N < 3N + 20000 lets say this is equation 1
(cost of FPGA lesser than that of gate array)
Also. 15N < 1N + 100000 lets say this is equation 2
(cost of FPGA lesser than that of standardcell)
Now
From equation 1
12N < 20000
N < 1666.67
From equation 2
14N < 100000
N < 7142.85
AT the same time, Both conditions must hold true
So N <= 1666 (Since N has to be an integer)
N has to be lesser than or equal to 1666.
Answer:
It looks like... A machine that reads electric pulse and surge... Not sure though.
Explanation:
Answer:
t = 6179.1 s = 102.9 min = 1.7 h
Explanation:
The energy provided by the resistance heater must be equal to the energy required to boil the water:
E = ΔQ
ηPt = mH
where.
η = efficiency = 84.5 % = 0.845
P = Power = 2.61 KW = 2610 W
t = time = ?
m = mass of water = 6.03 kg
H = Latent heat of vaporization of water = 2.26 x 10⁶ J/kg
Therefore,
(0.845)(2610 W)t = (6.03 kg)(2.26 x 10⁶ J/kg)

<u>t = 6179.1 s = 102.9 min = 1.7 h</u>