Answer:
d) 9.55 psi
Explanation:
pressure at the bottom is =ρgh
weight density is ρg=55 lb/ft³
h=25ft
pressure at the bottom is =
=1375psf
1 ft = 12 inch
pressure at bottom =
= 9.55 psi
so, answer will be option (d) which is 9.55 psi
Answer:

Explanation:
generally regeneration of cycle is used in the case of gas turbine. due to regeneration efficiency of turbine is increased but there is no effect on the on the net work out put of turbine.Actually in regeneration net heta input is decreases that is why total efficiency increase.
Now from T-S diagram



Due to generation
amount of energy has been saved.

So efficiency of cycle 

Effectiveness of re-generator

So the efficiency of regenerative cycle

Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:

Explanation:
The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

The velocity of water delivered by the fire hose is:


The maximum height is cleared in the Bernoulli's equation:


