Answer:
14.85 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) of tower = 45 m
Horizontal distance (s) moved by the balloon = 45 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the balloon to hit the shoe of the passerby. This is illustrated below:
Height (h) of tower = 45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
45 = ½ × 9.8 × t²
45 = 4.8 × t²
Divide both side by 4.9
t² = 45/4.9
Take the square root of both side
t = √(45/4.9)
t = 3.03 s
Finally, we shall determine the magnitude of the horizontal velocity of the balloon as shown below:
Horizontal distance (s) moved by the balloon = 45 m
Time (t) = 3.03 s
Horizontal velocity (u) =?
s = ut
45 = u × 3.03
Divide both side by 3.03
u = 45/3.03
u = 14.85 m/s
Thus, the magnitude of the horizontal velocity of the balloon was 14.85 m/s
Answer:
100 newtons
Explanation:
Given,
Jamal pushing a large box by a force, F = 100 N
Work done on the large box is, W = 0
It is because the applied force is less than the force of the friction between the two surfaces.
Yet, there will be a force that is exerted by the large box on Jamal.
According to newton's third law of motion, every action has an equal and opposite reaction. The reaction force is in the direction opposite to the force of action. But, their magnitude remains the same.

Hence, If the action force is 100 N, then the reaction force should be in 100 N
The Richter Scale<span> is not commonly </span>used<span> anymore, except for small </span>earthquakes<span>recorded locally, for which ML and Mblg are the only </span>magnitudes<span> that can be measured. For all other </span>earthquakes<span>, the </span>moment magnitude scale<span> is a more accurate measure of the </span>earthquake<span> size.</span>
Do you remember this formula for the distance traveled while accelerated ?
<u>Distance = (initial speed) x (t) plus (1/2) x (acceleration) x (t²)</u>
I think this is exactly what we need for this problem.
initial speed = 20 m/s down
acceleration = 9.81 m/s² down
t = 3.0 seconds
Distance down = (20) x (3) plus (1/2) x (9.81) x (3)²
Distance = (60) plus (4.905) x (9)
Distance = (60) plus (44.145) = 104.145 meters
Choice <em>D)</em> is the closest one.
Answer: D <u>(chemical</u> -> <u>heat</u> -> <u>mechanical</u>)
In automobile engines the petrol/diesel fuel enter in to the engine cylinder, due to spark at the end of the compression, fuel burnt increase the temperature and pressure, develops heat <em>(chemical energy -> heat energy). </em><em>This heat energy acts on a piston develops the work on the crankshaft </em><em>( Heat energy -> Mechanical energy)</em><em>. </em>