According to what is known about chemical equilibrium and Le Chatelier's principle, when you increase the amount of the reactants, the reaction will be moved to the products, this is because, the most reactants we have the most products we can produce.
From the given choices, the one that goes according to this reason is the third one: The volume of water vapor increases.
<u>Answer:</u>
It is the expression of Charles' Law.
<u>Explanation:</u>
The given expression V1T2 = V2T1 is the formula for the Charles' Law.
A special case of an ideal gas is named as the Charles' Law. This law applies to ideal gases only which are at constant pressure.
According to this law, the volume of a fixed mass of a gas is directly proportional to its temperature and is given by:
V1T2 = V2T1
If I'm correct the answer should be a series circuit :) Hopefully this helps you out
Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>
How much it has to drop and how heavy it is. Hope this is what you're looking for:)