Answer:phosphates are insoluble in water
Explanation:
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
1.more
2.longer
3.warmer
4.northern
5.less
6.shorter
7.colder
8.southern
Answer:

Explanation:
The molecular mass of a monomer unit is:
C₂H₃Cl = 2×12.01 + 3×1.008 + 35.45 = 24.02 + 3.024 + 35.45 = 62.494 u
For 1565 units,

Tollen's test is an organic test that determines whether the sample is an adehyde or not. When aldehydes are present, the reaction forms a silver compound which refers to the other name of Tollen's as silver mirror test. The aldehyde among the choices is C. pentanal