1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
3 years ago
6

The electric resistance in a length of wire is doubled when the wire is _________.

Physics
1 answer:
Serjik [45]3 years ago
3 0
When the wire is twice as long. Also when the cross sectional area is halved
You might be interested in
A piece of metal has attained a velocity of 107.8 m/sec after fallinf for 10 seconds what is its initial velocity
soldi70 [24.7K]

Answer:

7.8 m/s

Explanation:

Here object is falling with a gravitational acceleration there  for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation

V = U + at

V - Final velocity

U - Initial velocity

a - acceleration

t - time

V=U+at

107.8=U + 10×10

  = 7.8 m/s

4 0
3 years ago
Why is energy transferred from the substance to the surroundings when a substance freezes
jeyben [28]
Zalice sucks chakra woman trAnsfer to the fezze y try e
7 0
3 years ago
A photon of wavelength 2.78 pm scatters at an angle of 147° from an initially stationary, unbound electron. What is the de Brogl
Elena-2011 [213]

Answer:

2.07 pm

Explanation:

The problem given here is the very well known Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta is the angle of scattering.

Given that, the scattering angle is, \theta=147^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8} } (1-cos147^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos147^\circ ) m.\\\lambda^{'}-\lambda=2.42(1-cos147^\circ ) p.m.\\\lambda^{'}-\lambda=4.45 p.m.

Here, the photon's incident wavelength is \lamda=2.78pm

Therefore,

\lambda^{'}=2.78+4.45=7.23 pm

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

where,\vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda,

and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therefore,

\lambda_{e}=\frac{2.78\times 7.23}{\sqrt{2.78^{2}+7.23^{2}-2\times 2.78\times 7.23\times cos147^\circ }} pm\\\lambda_{e}=\frac{20.0994}{9.68} = 2.07 pm

This is the de Broglie wavelength of the electron after scattering.

6 0
3 years ago
. Friction is a rubbing force that ___________ a spinning yo-yo.
Advocard [28]
The yo-yo speeds up when you rub it
3 0
3 years ago
Read 2 more answers
A constant torque of 3 Nm is applied to an unloaded motor at rest at time t = 0. The motor reaches a speed of 1,393 rpm in 4 s.
irakobra [83]

Answer:

The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.

Explanation:

From Newton's Laws of Motion and Principle of Motion of D'Alembert, the net torque of a system (\tau), measured in Newton-meters, is:

\tau = I\cdot \alpha (1)

Where:

I - Moment of inertia, measured in Newton-meter-square seconds.

\alpha - Angular acceleration, measured in radians per square second.

If motor have an uniform acceleration, then we can calculate acceleration by this formula:

\alpha = \frac{\omega - \omega_{o}}{t} (2)

Where:

\omega_{o} - Initial angular speed, measured in radians per second.

\omega - Final angular speed, measured in radians per second.

t - Time, measured in seconds.

If we know that \tau = 3\,N\cdot m, \omega_{o} = 0\,\frac{rad}{s }, \omega = 145.875\,\frac{rad}{s} and t = 4\,s, then the moment of inertia of the motor is:

\alpha = \frac{145.875\,\frac{rad}{s}-0\,\frac{rad}{s}}{4\,s}

\alpha = 36.469\,\frac{rad}{s^{2}}

I = \frac{\tau}{\alpha}

I = \frac{3\,N\cdot m}{36.469\,\frac{rad}{s^{2}} }

I = 0.0823\,N\cdot m\cdot s^{2}

The moment of inertia of the motor is 0.0823 Newton-meter-square seconds.

5 0
3 years ago
Other questions:
  • A man weighing 700 NN and a woman weighing 440 NN have the same momentum. What is the ratio of the man's kinetic energy KmKmK_m
    7·1 answer
  • momentum A proton interacts electrically with a neutral HCl molecule located at the origin. At a certain time t, the proton’s po
    6·1 answer
  • g The “size” of the atom in Rutherford’s model is about 8 × 10−11 m. Determine the attractive electrostatics force between a ele
    8·1 answer
  • If you kick a tennis ball with 50 N of force and then kick a soccer ball with 50 N of force, explain the difference in their mot
    5·1 answer
  • Structures that trap light energy and perform photosynthesis
    13·1 answer
  • lood flows through a section of a horizontal artery that is partially blocked by a deposit along the artery wall. As a hemoglobi
    12·1 answer
  • a feather is dropped on the moon from a height of 1.40meters. the acceleration of gravity on the moon is 1.67m/s^2. determine th
    15·1 answer
  • Which of the following best describes the circuit shown below?
    12·2 answers
  • Assume that the car at point A and the one at point E are traveling along circular paths that have the same radius. If the car a
    10·1 answer
  • Explain the mode of operation of x-ray​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!