1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
3 years ago
9

In major league baseball, the pitcher's mound is 60 feet from the batter. If a pitcher throws a 85 mph fastball, how much time e

lapses from when the ball leaves the pitcher's hand until the ball reaches the batter? Express your answer to two significant figures and include the appropriate units.
Physics
1 answer:
Nostrana [21]3 years ago
8 0
The given from your problem are the following:
V = 85mph (This is miles per hour)
d = 60 feet

If you notice the units do not match. Before we can do anything else, we need to make the figures match. 

In this case, we will convert 85miles per hour to feet per hour.  There are 5,280 feet in 1 mile. 
\frac{85miles }{hr} x \frac{5,280feet}{1miles} = \frac{448,800feet}{hr}

But wait! If you think about the scenario, you are looking for how long it will take for the ball to reach the bat. The most applicable unit of time to use here is second. It would be very hard to really measure a short and instantaneous event in hours. So we convert it into feet per second: 

There are 3,600 seconds in 1 hour.

\frac{448,800feet }{hour} x \frac{1hour}{3,600seconds} = \frac{448,800feet}{3,600 seconds} = 124.67ft/s

So now we have our new given as:

v = 124.67ft/s
d = 60 ft

The formula for time can be derived from the formula from velocity, which is:
velocity = \frac{distance}{time}

The formula of time will then be:
time= \frac{distance}{velocity}

All you need to do is plug in what you know and solve for what you don't know. 

time= \frac{60feet}{124.67ft/s}

time= 0.48s

The answer then is 0.48s.

If you want this in hours, just divide the value in seconds by 3,600. The answer would then be 0.00013hr. (See how small it is? This is why seconds would be a more appropriate measure.)
You might be interested in
In the Bohr model of hydrogen, the electron moves in a circular orbit around the nucleus. (a) Determine the orbital frequency of
Airida [17]

Answer:

(a) 6.567 * 10^15 rev/s or hertz

(b) 8.21 * 10^14 rev/s or hertz

Explanation:

Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)

Where Fn is frequency at all levels of n.

Z = 1 (nucleus)

e = 1.6 * 10^-19c

m = 9.1 * 10^-31 kg

h = 6.62 * 10-34

K = 9 * 10^9 Nm2/c2

(a) for groundstate n = 1

Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s

(b) first excited state

n = 1

We multiple the groundstate answer by 1/n^3

6.567 * 10^15 rev/s/ 2^3

F2 = 8.2 * 10^ 14 rev/s

3 0
3 years ago
Which of these accurately describes the products of a reaction?
stiv31 [10]
The one that accurately describes the products of a reaction is : B. new substances that are present at the end of a reaction
For example the process of photosynthesis transform CO2 and other nutrients into O2 and H2O

hope this helps
3 0
2 years ago
Read 2 more answers
The de Broglie wave is produced only by sub atomic particle and photon. O True O False
Alina [70]

Answer:

True

Explanation:

Matter can be in the form of a particle or a wave. This is known as the dual nature of matter. This concept was proposed by Louis de Broglie and was named after him. This phenomenon has been observed for all the elementary particles.

The de Broglie wavelength is given by

\lambda=\frac{h}{p}=\frac{h}{mv}

Where

h = Planck's constant

p = Particles momentum

m = Mass of particle

v = Velocity of particle

8 0
2 years ago
A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein
RSB [31]

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

3 0
2 years ago
When you compare the prices of two different pairs of shoes, money is a _____.
Vladimir [108]

unit of account is the answer

3 0
3 years ago
Read 2 more answers
Other questions:
  • In this vLab you used a complex machine to launch a projectile with the ultimate goal of hitting the target. Assume you built a
    14·1 answer
  • A 37 N object is lifted to a height of 3 meters, What is the potential energy of this object?
    7·1 answer
  • Three equal point charges, each with charge 1.25 μC , are placed at the vertices of an equilateral triangle whose sides are of l
    5·1 answer
  • A sphere of radius r = 5cm carries a uniform volume charge density rho = 400 nC/m^3. Q. What is the total charge Q of the sphere
    8·1 answer
  • Which would sound travel faster through: the ocean, the air, or a rock? Why?
    13·1 answer
  • Two balls of the same shape and size have charges of +8 and-2. The balls are brought together, allowed to touch, and then separa
    15·1 answer
  • Is college football playoffs the best way to determine the national champion?
    15·1 answer
  • Why is the sky blue? The earth is surrounded by an atmosphere.
    12·1 answer
  • The form of energy stored in food is known as
    11·2 answers
  • Which property do the elements in each column of the representative elements series of the periodic table have in common?(1 poin
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!