<h2>It solved by the Hooke's law states F=kx</h2>
answer is
<h2>0.4n/m</h2>
That would be the second law
Answer:
t = 16.94 s
Explanation:
t is the time passes before police catch the speeder
speed of speeder Vo = V = 23.3 m/s
T = t
Police Info
Vo = 0 m/s
a = 2.75 m/s^2
t = t
Now,
displacement of the police car = displacement of the speeder.
x_{police} = Vo *t + 1/2 at^2
since Vo = 0
x police = 1/2 at^2
x police = 1/2 (2.75)(t)^2
Now the displacement of speeder is
x_{speeder} = Vt
x_{speeder} = 23.3 t
x_{speeder} = x_{police}
23.3 t = 1/2 * 2.75 t^2
23.3 t = 1.375 t^2
t = 23.3\1.375
t = 16.94
t = 16.94 s
Answer:
Explanation:
Given that,
Initial speed of the girl is
u = 1.4m/s
Height she is going is
H = 2.45m
Incline plane she will pass to that height
L = 12.4m
Mass of girl and bicycle is
M=60kg
Frictional force that oppose motion is
Fr = 41N
Speed at lower end of inclined plane
V2 = 6.7m/s
Work done by the girl when the car travel downward
Using conservation of energy
K.E(top) + P.E(top) + work = K.E(bottom) + P.E(bottom) + Wfr
Where Wfr is work done by friction
Wfr = Fr × d
P.E(bottom) is zero, sicne the height is zero at the ground
K.E is given as ½mv²
Then,
½M•u² + MgH + W = ½M•V2² + 0 + Fr×d
½ × 60 × 1.4² + 60×9.8 × 2.45 + W = ½ × 60 × 6.7² + 41 × 12.4
58.8 + 1440.5 + W = 1855.1
W = 1885.1 —58.8 —1440.5
W = 355.8 J