Answer:
1.125m/s^2
Explanation:
Since acceleration is defined as the rate of change in velocity with respect to time. Mathematically
v^2= u^2+2as
Where a,v,u and s are the acceleration, final velocity, initial velocity and distance respectively.
a = ?
u = 0m/s
v = 15m/s
s = 100m
Substituting the values into the formula above
v^2= u^2+2as
15^2=0^2+2×a×100
225= 0+200a
225= 200a
Divide both sides by 200
225/200 = 200a/200
a= 1.125m/s^2
Hence the acceleration of the car is 1.125m/s^2.
Note that the car accelerated uniformly from rest, that was why the initial velocity was 0m/s
We are given with the x and y components of Vector A and B. In this case, we compute the resultant of both components of each vector. The vector is equal to the square root of the sum of the squares of the components. A is equal to 2.60 cm. B is equal to 5.56 cm. B is found in quadrant Iv and has an angle of 42.447 degrees as a terminal angle. A has an angle of 59.98 degrees.
a. 5.6082 < -15.53 degreesc. 6.63 <-64.98 degreesb. x = 6.63 cos -64.98 degrees = 2.80 y = 6.63 sin -64.98 degrees = -6.00
Battery based heaters use electric resistance heating, which uses a lot of current (electricity) to create the heat.
Answer:

Explanation:
Wien's displacement law states that the radiation of the black body curve for different temperatures will give peak values at different wavelengths and this wavelength is related inversely to the temperature.
Formally the law of Wien displacement states that the black body's spectral radiation per unit of wavelength, will give peaks at the wavelength of
which is given by the mathematical expression.
Here, b is proportionality constant with value of
The wavelength of the peak of the Gaussian curve is inversely related to temperature in degree kelvin.
The answer, using an indicator to measure the hydrogen ion concentration of a solution, is correct